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Preface to the Paperback Edition

In the few years that have elapsed since this book first appeared in hardback,
structure determination from powder diffraction data (SDPD) methods have
been refined and accepted into the structural communities as a powerful alter-
native for use when single-crystal diffraction methods are not appropriate. This
is clearly reflected in the number of papers being published that involve the use
of SDPD and it is particularly gratifying to see SDPD-derived structures
appearing regularly in volumes of Acta Crystallogr. B, C, and E, confirming the
truly routine nature of the technique in many instances. This surely also reflects
the fact that instrumental developments, both in laboratories and at synchro-
tron sources, have made measuring very high-quality X-ray powder diffraction
data easier than ever before.

Many of the more recent developments in methods, algorithms and computer
programs are covered in a special issue of Zeitschrift Fur Kristallographie
(volume 219, 12, 2004) which is dedicated to the subject of SDPD. It is probably
true to say that the majority of developments have been incremental rather than
revolutionary; there has been no step change in the level of structural com-
plexity that can be tackled as a result of the introduction of, for example, novel
optimisation methods, new evaluation functions or the closer coupling of direct
methods/global optimisation. The change in complexity represented by the
study of protein structures using powder diffraction still lies more in the domain
of structure refinement than determination but regardless, it represents an
exciting new research topic.



Preface

The art of solving a structure from powder diffraction data has developed
rapidly over the last ten years. Prior to 1990, very few unknown crystal struc-
tures had been determined directly from powder diffraction data, and each
structure solved could be regarded as a four de force of ingenuity and perse-
verance. Today, the situation is quite different and numerous crystal structures,
both organic and inorganic, have been solved from powder data. Developments
in instrumentation, computer technology and powder diffraction methodology
have all contributed to this increased success rate. However, the route to a
successful structure determination is still by no means as straightforward and
routine as it is with single-crystal diffraction data.

In the chapters that follow, experts in the field discuss both the fundamental
and applied aspects of structure solution from powder diffraction data. The
process is sequential, with any particular stage depending crucially on the
successful completion of all the previous steps, and the ordering of the chapters
within the book essentially reflects this flow. Although the Rietveld method of
structure refinement from powder diffraction data is often loosely considered to
be synonymous with structure determination, it is not. The Rietveld method
only comes into play in the final stage of the structure solution process when an
approximate structural model has been found. The subject of this book is how
that structural model is determined.

Despite the sequential nature of the structure determination process, there are
nevertheless various paths that can be taken through it. The art of structure
solution from powder diffraction data lies not only in the correct application of
a specific technique or computer program, but also in the selection of the
optimal path for the problem at hand. The limitations inherent to the data
available and to each of the methods used must be recognized. This book is
designed to help the reader find his or her way through the maze of possibilities.

Readers will find that while every effort has been made to ensure that the
chapters present a consistent and coherent approach to structure determination,
no attempt has been made to gloss over differences of opinion, as expressed by
individual authors, regarding the benefits or limitations of particular methods.
This is particularly apparent in the case of the key step of intensity extraction,



PREFACE vii

where the relative merits of the Pawley and Le Bail methods are raised in several
chapters. Such differences are, however, minor and should not overly concern
the reader. Indeed, probably the most significant legacy of the past decade lies in
the diversity of methods that have been developed.

William I. F. David
Kenneth Shankland
Lynne B. McCusker
Christian Baerlocher
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Introduction

William 1. F. David, Kenneth Shankland, Lynne B. McCusker
and Christian Baerlocher

1.1 Crystal structures from powder diffraction data

Powder diffraction has played a central role in structural physics, chemistry and
materials science over the past twenty years. Important advances in structural
studies of materials ranging from high temperature superconductors and full-
erenes to zeolites and high-pressure research have relied heavily on the powder
diffraction technique. By far the majority of these structures have been analysed
using the Rietveld method (Rietveld 1969), a development which has greatly
enhanced the power of powder diffraction experiments (Young 1993). However,
the Rietveld method is a refinement process and, as such, requires that an
approximation to the correct structure be known in advance. If a structural
model is not available, it must first be determined.

Unfortunately, structure determination from powder diffraction data is much
more difficult than from single crystal data. This is associated almost entirely
with the collapse of the three dimensions of crystallographic information onto
the single dimension of a powder diffraction pattern. The resulting ambiguity
in the data creates particular problems in the determination of the unit cell and
in the application of traditional Direct methods or Patterson techniques.
Indeed, all parts of the structure solution process are less straightforward than
their single-crystal equivalents. Nevertheless, with improvements in instru-
mentation and algorithm developments coupled with greater computing power,
increasingly complex crystal structures are being solved from powder diffrac-
tion data alone. Ironically, for some larger structures, the weak link in the
structure determination chain is becoming the final structure refinement itself. It
can be easier to determine a structure with more than 50 independent atoms
than to provide an accurate and precise refinement of its crystal structure.
Algorithm advances in powder diffraction data have come full circle with
structure determination now providing an impetus for the further development
of the Rietveld method.

Why should powder diffraction be used for structure solution when the
single-crystal approach is much more straightforward? The answer is simple:
there are many materials for which no single crystals are easily available.
If representative single crystals are available, then single crystal diffraction is the
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preferred method. For structures with less than 100 atoms in the asymmetric
unit, single-crystal techniques are almost guaranteed to be successful and the
final refined structure will almost always be more reliable than its powder dif-
fraction equivalent. Indeed, the most recent developments in Direct methods of
structure solution from single-crystal data (Weeks er al. 1994; Burla et al. 2000)
have seen stunning successes, with structures containing up to 2000 atoms now
tractable. If only powder samples are available, there may still be small crys-
tallites that are large enough to be used for microcrystalline diffraction. This
will usually give a higher likelihood of success, particularly for larger crystal
structures, and will enable a more precise and accurate crystal structure to be
obtained. Microcrystals do, however, suffer from the obvious disadvantage that
they may not be representative of the bulk powder. Thus, for such samples, it is
essential to collect a powder diffraction pattern as well to verify that the
structure obtained from the microcrystal corresponds to that of the bulk
material.

With the techniques described in this book, however, it is clear that a powder
diffraction pattern on its own can provide enough structural information to
allow fairly complex structures to be solved. Indeed, even relatively poor dif-
fraction patterns can yield successful structure solutions. This is illustrated in
Fig. 1.1, where the crystal structure of 1,4-diethynyl-2,5-bis(octyloxy)benzene
(Fig. 1.1(a)) has been determined from the rather poor laboratory X-ray dif-
fraction data shown in Fig. 1.1(b).

Although most of the structures determined from powder diffraction data
have been solved in the last few years, there are, nevertheless, important
examples that go back to the very earliest days of X-ray crystallography. Many
of these structures are relatively straightforward but, nevertheless, represent
significant zours-de-force for their time. Notable contributions include those of
Zachariasen (1948) and Werner and co-workers in the 1970s (e.g. Berg and
Werner 1977). Zachariasen, in particular, used a number of ingenious methods
to solve crystal structures from powders. His work on -plutonium (Zachariasen
and Ellinger 1963), for example, utilized differential thermal expansion to
resolve Bragg peak overlap (see Chapter 9). Many of the early zeolite structures
that were solved from powder diffraction data involved model building
and significant chemical intuition (e.g. zeolite A, Breck er al. 1956; ZSM-5,
Kokotailo et al. 1978), and these concepts are now being implemented in
computer algorithms. More details about the fascinating history of structure
solution from powder data can be found in Chapter 2.

Today, structures of much higher complexity have become accessible to
powder diffractionists. A number of different research groups are now applying
the increasingly powerful techniques to a wide range of problems. Just a few
recent examples are given here to illustrate the diversity and richness of the field.
Conventional single-crystal approaches adapted to cope with the vagaries of
powder diffraction data have been used to solve structures as complicated
as the sulfathiazole polymorph V (32 non-H atoms in the asymmetric
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Fig. 1.1. (a) The molecular formula of 1,4-diethynyl-2,5-bis(octyloxy) benzene (b)
Diffraction data collected at 1.5406 A from a sample of 1,4-diethynyl-2,5-bis(octyloxy)
benzene using a Stoe X-ray powder diffractometer equipped with a linear position
sensitive detector.

unit; Chan ez al. 1999), fluorescein diacetate (31 non-H atoms; Knudsen et al.
1998), and the mineral tinticite with a complex structural disorder (Rius ez al.
2000). With better estimates of reflection intensities obtained by collecting
multiple datasets on a textured polycrystalline sample, the power of Direct
methods could even be extended to solve the structure of the zeolite UTD-1F
(117 non-H atoms; Wessels et al. 1999). Heavy atom methods followed by
Fourier recycling have allowed a complex tubular uranyl phenylphosphonate to
be solved from laboratory X-ray data (50 non-H atoms; Poojary and Clearfield
1997; Poojary et al. 1996). Global minimization procedures operating in direct
(model-building) space have been applied successfully to some very large
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molecular compounds, including 3-haematin (43 non-H atoms and eight vari-
able torsion angles; Pagola ez al. 2000), an organometallic bipyridine polymer
(29 non-H atoms and five variable torsion angles; Dinnebier ez a/. 2000), and
Ph,P(O) (CH,),P(O)Ph, (35 non-H atoms and 12 variable torsion angles;
Kariuki et al. 1999). On the non-molecular side, a zeolite-specific method that
operates in both direct and reciprocal space was used to elucidate the structure
of the zincosilicate VPI-9 (59 non-H atoms; McCusker et a/. 1996). These are
just a few examples of the state-of-the-art of structure solution from powder
diffraction data. Many more are given in the following chapters. Indeed, new
ones are appearing in the open literature with increasing frequency.

1.2 The structure determination process
The structure determination process can be viewed as a search for the best way

throughamaze (Fig. 1.2). Although thereare many paths leading to the centre (i.e.
the final structure), not all are appropriate or even feasible for a given problem.
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Fig. 1.2. The structure determination maze.
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It is immediately apparent from Fig. 1.2 that everything depends upon the
sample itself. Even if a material cannot be crystallized in the form of single or
even microcrystals, time invested in producing a high-quality polycrystalline
sample (e.g. high purity and crystallinity) prior to a structural investigation is
time well spent. All subsequent steps in the structure determination process will
depend upon the quality of the data and these in turn depend upon the quality
of the sample.

The first choice in finding a path through the maze is which radiation source
and instrument geometry is best suited to the problem. Are high-resolution data
collected on a laboratory X-ray instrument (Chapter 3) sufficient, or does the
complexity of the problem require the higher resolution or tunability offered by
a synchrotron source (Chapter 4)? Or does the nature of the material make a
neutron experiment (Chapter 5) more appropriate? Of course, once the type of
experiment has been established, the data collection parameters (e.g. step size,
counting times, data range) must be evaluated and optimized for the problem in
hand (Chapter 6).

Whichever path is chosen for the data collection, the first step in data analysis
is the indexing of the diffraction pattern (Chapter 7). While modern indexing
programs work extremely well with good data, the user needs to be aware of the
potential pitfalls. Even with excellent diffraction patterns, conventional auto
indexing programs will sometimes fail to yield the correct unit cell. For example,
the synchrotron diffraction pattern shown in Fig. 1.3 was not indexed correctly,
despite the fact that (a) all of the first 40 reflections were indexed, (b) the average
absolute difference between observed and calculated 20 was only 0.00034°, and
(c) the Fyq figure of merit was 2178 (for a definition of Fyy see Chapter 7).

All but one of these first 40 reflections can in fact be accounted for by a single
plane in reciprocal space with corresponding lattice constants a =23.4891(4) A,
c=21.3685(4) A, B= 116.485(2)°. The length of the b axis (b=3.7698(2) A) is
determined by a single peak position, and is, unfortunately, completely spur-
ious. It is essential to realise that if the unit cell is wrong, all effort expended in
the subsequent search for the correct structure will be pointless. It is ironic that
progress in our ability to solve larger structures takes us into a region where unit
cells inevitably become larger, thus creating problems at the indexing stage. In
the case shown in Fig. 1.3, it is the combination of two long axes and one very
short axis that creates the problem.

Once the unit cell has been found, the associated space group must be deter-
mined. Thisis also a critical step, and is often difficult and rarely unambiguous. In
many cases, several space groups willneed to be investigated and the possibility ofa
furtherreductioninthe symmetry always bornein mind. Thisisonearea of powder
diffraction where subjective judgements remain the norm, though a probabilistic
approach (Markvardsen et al. 2001; Chapter §) has recently been proposed.

From the unit cell and the selected space group, the positions of the reflections
in the diffraction pattern can be calculated. The diffracted intensity associated
with each reflection can then be determined by applying a whole-profile-fitting
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Fig. 1.3. High-resolution X-ray powder diffraction data collected using an incident
wavelength of 0.8266 A on BM16 of the ESRF. The sample is a material of
pharmaceutical interest contained in a 1.0 mm capillary.

technique similar to that used in a Rietveld refinement but with the intensities of
the reflections rather than the structural parameters being the non-profile
variables (Chapter 8). This procedure, known as intensity extraction, can be
performed using either a least-squares method (Pawley 1981) or an iterative
approach (Le Bail er al. 1988). Even if integrated intensities are not used in
subsequent steps, this procedure is still necessary to establish the appropriate
profile parameters for whole-profile applications.

Those reflections that are too close to one another to be considered indepen-
dently (i.e. strongly overlapping reflections) must be recognized and treated in
some way. The simplest approach is to equipartition the total intensity over all
contributing reflections (taking the peak-shape function into consideration), but
several methods for obtaining better estimates of the relative intensities of over-
lapping reflections have been developed and these are strongly recommended
(Chapters 8—11). Keeping track of the correlations between reflection intensities is
also advantageous. Of course, the partitioning step can be bypassed if the whole
profile is to be used in combination with direct-space techniques, but for the
application of Patterson and Direct methods, partitioning cannot be avoided.

The option of collecting multiple datasets to obtain a more reliable parti-
tioning of these reflections and more single-crystal-like intensities (Chapter 9)
might be chosen if the structure under study is complex. Data collected at
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different temperatures for a material displaying anisotropic thermal expansion
or at different sample orientations for samples with a preferred orientation of
the crystallites can provide additional information about the relative intensities
of overlapping reflections. Whichever method of partitioning is applied, the
result is a pseudo-single-crystal dataset (i.e. list of skl and I,).

Only at this point can the actual determination of the structure begin. The
methods currently available can be grouped into three main categories: (a)
adaptations of single-crystal techniques, (b) direct-space methods that exploit
prior chemical knowledge, and (c) hybrids of the two. These are discussed in
more detail in the next three sections.

The final and often most time-consuming step in the structure determination
maze is the completion of the structure (e.g. finding any missing atoms by
Fourier analysis, resolving disorder problems, etc.) and the refinement of the
structural parameters using the Rietveld method (Rietveld 1969; Young 1993).
Only when the refinement has been brought to a successful conclusion can the
structure proposal from the structure determination step be considered to be
confirmed. Throughout the whole procedure, chemical information and intui-
tion play an important role in guiding the user through the maze (Chapter 17).

1.3 Adapting single-crystal structure solution methods to
powder diffraction data

Conventional crystallographic approaches to structure solution such as Direct,
Patterson and maximum-entropy methods have been modified to address
the problems posed by the deficiencies inherent to powder diffraction data
(Giacovazzo 1998). The basic concepts of Direct methods and the difficulties
involved in their application to powder data are outlined in Chapter 10, and
the more practical aspects of their application are discussed in Chapter 11.
Patterson techniques, including maximum entropy Patterson maps and the use
of the symmetry minimum function in structure solution, are discussed in
Chapter 12, and a derivation of how the Direct methods sum function can be
used to solve structures from Patterson syntheses is presented in Chapter 13.
Finally, the adaptation of the maximum entropy approach to structure solution
for the case of powder diffraction data is described in Chapter 14.

In the standard Direct methods approach to crystal structure solution, a
density map of the unit cell is generated using the Fourier transform of a set of
measured structure factor magnitudes and a corresponding set of calculated
phase angles, that is,

() = 3 [FibJee (1.1)
h

Assuming that the structure factors have been collected to atomic resolution
from a single crystal and the calculated phase angles are approximately correct,



8 INTRODUCTION

the resultant density map is composed of discrete ‘blobs’ of electron or nuc-
lear density within the unit cell, corresponding to the atomic positions in
the structure. It is then a straightforward matter to connect these ‘blobs’, using
the rules of chemical bonding, in order to visualize the crystal structure. If the
complete structure is not elucidated in a single pass, a series of difference
Fourier or fragment recycling calculations will normally reveal the remaining
atoms.

However, it is relatively rare in powder diffraction, particularly when dealing
with organic crystal structures, for good quality diffraction data to be obtained
to atomic resolution. Accordingly, one is typically faced with the prospect of
interpreting low-resolution density maps in ways analogous to those employed
so successfully by protein crystallographers. There is, however, one very
important difference. In the case of protein crystallography, the low-resolution
density maps are generally based upon a large number of well-determined
structure factor magnitudes. Furthermore, the phases are normally derived
from one or more single-crystal experiments involving isomorphous replace-
ment or anomalous dispersion measurements. Compare this with the situation
in powder diffraction, where we typically have a small number of poorly
determined structure factor magnitudes and are restricted to phases derived
from Direct methods probability relationships or from heavy atom positions
gleaned from a Patterson map. It should, therefore, come as no surprise that the
quality of the density maps obtained from a powder diffraction experiment can
be quite poor and their interpretation a non-trivial matter.

Nonetheless, single-crystal methods have been applied quite successfully to
both inorganic and organic structures with up to several tens of atoms in the
asymmetric unit. Continuing developments in Direct methods (Altomare ez al.
2000) are likely to push these numbers even higher.

1.4 Direct-space methods that exploit chemical knowledge

Direct-space methods have evolved from traditional model building in which all
available information about the material is used to construct a chemically
feasible structural model. The diffraction pattern calculated from this model is
then compared with the measured one to evaluate the model’s viability. As this
approach takes advantage of prior chemical knowledge and not just the dif-
fraction data, it is a very powerful one, but it is time consuming and uncom-
fortably dependent upon the intuition and ingenuity of the model builder.
However, with modern computing power, large numbers of feasible models can
be generated, evaluated and modified automatically once the chemical infor-
mation has been suitably encoded. The encoding is the crucial point.
Naturally, the encoding makes an algorithm specific to a chemical class of
materials, but this class can be as general as organic molecules. In fact, the most
successful algorithms to date have been developed for molecular compounds,
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where the connectivity of the atoms is known. Given the connectivity and
typical bond lengths and angles, it is relatively straightforward to describe the
molecule in terms of internal coordinates (i.e. bond distances, bond angles and
torsion angles). Then, the only variables are the position and orientation of the
molecule as a whole plus any variable torsion angles. Using this information,
thousands or even millions of chemically feasible trial structures can be gen-
erated automatically and their powder patterns calculated. The only problem is
finding the structure corresponding to the best fit between the observed and
calculated diffraction data (i.e. the global minimum).

A number of algorithms, ranging from simple grid searches (Chernyshev and
Schenk 1998) to simulated annealing and genetic algorithms (Kariuki ez al.
1997; Shankland et al. 1997; Turner ez al. 2000) have been developed. Global
optimization procedures for the solution of molecular structures are described
in Chapter 15, and the specific use of a simulated annealing approach for this
purpose is discussed in Chapter 16.

For inorganic structures, or those where connectivity is not known, other
approaches are needed. In fact, Deem and Newsam (1989) were the first to
introduce the concept of simulated annealing in the context of structure solu-
tion from powder diffraction data, and they did so for zeolite structures, not
molecular compounds. The chemical information they used was the fact that
zeolites and related materials have three-dimensional framework structures
composed of corner-connected tetrahedral units (TO4, where T = Si, Al, P,
etc.). They encoded this information in the form of pseudo-potentials for T-T
distances, T-T-T angles and coordination number (derived from related
structures). The variables were simply the positions of the T-atoms in the unit
cell. These were moved around the asymmetric unit in a search for a global
minimum corresponding to the best fit of the pseudo-potentials and the
observed and calculated diffraction patterns. Falconi and Deem (1999) have
since refined that simulated annealing minimization procedure to include a
parallel tempering algorithm.

Another option for structures in which the connectivity is not known is to
introduce the chemical information in the form of chemical potentials. This
approach has been implemented, for example, in the program ENDEAVOUR
(Putz et al. 1999).

1.5 Hybrid approaches

Approaches that work in both reciprocal and real space have also been devel-
oped. The program FOCUS, for example, uses chemical information about
zeolite framework structures in real space in combination with intensities and
(random) phases in reciprocal space to solve zeolite structures (Chapter 17).
Another combination involves the use of a structure envelope (Brenner
et al. 1997; Brenner 1999), derived from just a few strong low-resolution (high
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d-spacing) reflections, to restrict a direct-space search for the structure to the
most likely areas of the unit cell.

The latest release of EXPO attempts to take the best elements of the Direct
methods based approaches and combine them with elements of the global
optimization strategies outlined above. In particular, expected coordination
geometry is taken into account in the interpretation of density maps (Altomare
et al. 2000). It seems entirely logical that continuing software developments will
see an equivalent flow of important features from Direct methods into the
global optimization based programs.

1.6 Outlook

It is generally unwise to make predictions about how a particular research field
will develop in the future. After all, few foresaw the arrival and impact of the
‘Shake-and-Bake” methodology (Weeks et al. 1994) upon the field of single-
crystal diffraction. However, the last few years have seen structure determina-
tion from powder diffraction data move quickly from simple demonstrations of
underlying principles to real-life applications. It is interesting to consider the
complexity of many of the structure solution examples contained in this book in
the general context of organic molecular structures solved by single-crystal
diffraction methods. It is clear from Fig. 1.4 that powder diffraction is now in a
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Fig. 1.4. Distribution of the number of organic (excluding organometallic) molecular
crystal structures in the October 2000 release of the Cambridge Structural Database
versus the number of atoms (including hydrogens where reported) in each structure.
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position to contribute valuable crystal structures to the peak of the distribution,
rather than simply adding to its leading edge.
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Structure determination from powder diffraction data:
an overview

Anthony K. Cheetham

2.1 Introduction

The explosion of interest in powder diffraction methods during the last 30 years
has been driven by a number of factors. The major one was most certainly
the development of the Rietveld method (Rietveld 1969) in the late 1960s, since,
at a stroke, this extended the scope of powder techniques from simple, high-
symmetry materials to compounds of substantial complexity in any space
group. Within five years, for example, the method was being used to refine the
structures of orthorhombic and monoclinic materials with as many as 22
atoms in the asymmetric unit (Von Dreele and Cheetham 1974), and by 1977,
Cheetham and Taylor were able to review the application of the Rietveld
method to over 150 compounds (Cheetham and Taylor 1977). The majority of
these early applications involved the use of neutrons, but the field received a
further boost in the late 1970s and early 1980s with the extension of the Rietveld
method to X-ray data (Malmros and Thomas 1977; Young ez al. 1977), time-of-
flight neutron data (Von Dreele et al. 1982), and then synchrotron X-ray data
(Cox et al. 1983). These instrumental advances were accompanied by software
developments, such as the availability of the DBWS (Wiles and Young 1981)
and GSAS (Larson and Von Dreele 1987) packages, making possible the ana-
lysis of data from complex mixtures or the simultaneous analysis of more than
one dataset. Another major area of interest has been the development of
methods for solving unknown structures from powder diffraction data, a
subject that is the primary focus of this book.

The developments in powder diffraction have been driven by a growing need
for tools that are able to probe the structures of materials that are only available
in powder form, or can only be studied as powders (e.g. under difficult in siru
conditions). Such materials include many zeolite catalysts, as well as certain
high T, cuprates and fullerenes. Table 2.1 lists some of the many areas in which
powder diffraction methods have had a major impact; clearly, modern materials
science and many other areas have been major beneficiaries of the developments
in this area during the last 30 years, and this trend will surely continue well into
the twenty-first century.
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Table 2.1 Impact of powder diffraction methods in materials science
and other areas

Hydrogen storage Superconductivity
Metal hydrides High T. cuprates
Magnets Batteries/fuel cells
Magnetoresistance, GMR (B-alumina solid electrolytes
Heterogeneous catalysts Ferroelectrics
Zeolites, clays PbTiO; etc.
Ceramics Electro-optics
Zirconias Non-linear optics, e.g. KTiOPO,
Novel materials Biominerals
Cyp fullerenes Apatites
Coordination compounds Organic materials
Homogeneous catalysts Pharmaceuticals

The aim of this overview is to trace the key developments in powder dif-
fraction methods from their discovery in the early twentieth century to the
present day. The evolution of tools for solving unknown structures will be
emphasized, while remembering, of course, that the refinement step is also an
important component of this process.

2.2 Early history of powder diffraction

The possibility of using powder diffraction methods to study materials was
recognized shortly after the discovery of X-ray diffraction by Laue and von
Knipping in 1910. In particular, the construction of a simple powder dif-
fractometer was described by Hull in 1917 (Hull 1917), and the instrument was
used to obtain patterns from a number of simple materials such as diamond,
graphite and iron. Even at this early stage, the use of metal foils to remove K3
radiation from the X-ray beam was well understood. Within a few years, many
others, including the Braggs and Pauling, had exploited the powder method to
study a wide range of materials, including metals, minerals, and simple organic
solids. It could reasonably be argued that the first ab initio structure deter-
minations were performed during this period, since the crystal structures of
many simple materials (e.g. rocksalt) were obtained from powder diffraction
data alone.

The first systematic attempts to determine unknown structures of non-cubic
materials were probably those of Zachariasen, reported in the late 1940s. For
example, the hexagonal structure of UCls, in space group P63/m, was deter-
mined by first placing the heavy atom and then estimating the position of the
chlorine by careful inspection of the intensities of different classes of reflections
(Zachariasen 1948a). In the same issue of Acta Crystallographica, a series of



PRE-RIETVELD REFINEMENT METHODS 15

papers by Zachariasen describe the structures of eight uranium halides and
oxohalides from X-ray powder data (Zachariasen 1948b), and in the following
year a similar approach was used by Mooney to solve the tetragonal structure of
UCl4 (Mooney 1949).

These early approaches might be regarded as trial-and-error methods, though
they reveal great insight into the relationships between trends in the integrated
intensities of different classes of reflections and the locations of the scattering
centres. They certainly laid the foundations for the systematic approaches that
evolved during subsequent decades.

2.3 Early ab initio approaches

There are at least two papers in the 1960s that describe systematic attempts to
use the structure-solving tools of modern crystallography, Direct methods and
Patterson techniques, to solve structures from powder data. In a remarkable
paper by Zachariasen and Ellinger (1963), the monoclinic structure of
B-plutonium, in space group 12/m, was solved by using a manual Direct
methods phasing procedure. There are seven Pu atoms in the asymmetric unit,
underlining the complexity of this task. A particularly interesting aspect of this
work was the clever use of the anisotropic thermal expansion of -plutonium to
unscramble the individual Bragg intensities of overlapping reflections from
patterns collected at different temperatures (see Chapter 9). As will become
clear later, the treatment of overlapping reflections remains one of the major
issues in structure determination from powder data.

Another eye-catching paper from the 1960s is that by Debets (1968) in which
the orthorhombic structure of UO,Cl, in space group Pnma was determined by
Patterson methods. As in the work of Zachariasen and Ellinger, their approach
is not radically different from that which has been used widely in the late 1980s
and 1990s. An interesting difference between these early studies and the more
recent work, however, is that the structure refinement step did not take
advantage of least-squares methods, which, of course, are used routinely today.
Nevertheless, the essential correctness of the UO,Cl, structure has since been
confirmed by Taylor and Wilson (1973).

2.4 Pre-Rietveld refinement methods

The development of least-squares crystallographic structure-refinement
methods in the 1960s, which was facilitated by the growing availability of digital
computers, was applied not only to single-crystal data but also to powder data.
A number of laboratories, such as UKAEA, Harwell, made widespread use of
single-crystal codes for refining structures from powder data, and some of the
codes were adapted to handle groups of non-equivalent overlapping reflections
that could not be resolved experimentally. Table 2.2 shows an example of such a
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Table 2.2 Integrated-intensity structure refinement
for Feyg,30 at 800°C, based upon powder neutron
diffraction data. There were 12 observations and four
variable parameters: the scale factor, the occupancy
number for the tetrahedral interstitial site, and indepen-
dent isotropic temperature factors for the iron and
oxygen atoms (Cheetham et al. 1970). The R; value is
0.78 per cent

hkl I(obs) I(calc)
111 6092 6315
200 89766 89 604
220 79186 79285
311 3378 3484
222 26340 26139
400 12697 13094
331 1540 1377
420 31104 31301
422 23695 23438
333/511 1061 898
440 5831 6042
600/442 10394 10308

refinement, carried out at Harwell shortly before a Rietveld program that would
run on the computer there became available. The paucity of data and the poor
observation-to-parameter ratio make it hard to believe that this was essentially
the state-of-the-art in the late 1960s, but it is important to stress that such
studies played an important role at the time in the quantitative structural
characterization of high-symmetry inorganic materials. A particular class of
materials that benefited from this approach was that of non-stoichiometric
compounds, which are typically high-symmetry phases that are found at high
temperatures. Nevertheless, the limitation of the integrated intensity method,
at the time, was that it could not be applied to the complex patterns obtained
from low-symmetry materials. The advent of the Rietveld refinement method,
however, was soon to solve this problem.

2.5 Rietveld refinement

In response to the need to develop enhanced procedures for obtaining structural
information from powder samples, in the late 1960s, Rietveld (1969) proposed a
method for analysing the more complex patterns obtained from low-symmetry
materials by means of a curve-fitting procedure. The least-squares refinement
minimizes the difference between the observed and calculated profiles, rather
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than individual reflections. In the first instance, this procedure was carried out
with constant wavelength neutrons, rather than X-rays, because of the simpler
peak shape of the Bragg reflections. With constant wavelength neutrons, it can
normally be assumed that the reflections are Gaussian in shape, and the cal-
culated intensity at each point (say, 0.05° 26 steps) on the profile is obtained by
summing the contributions from the Gaussian peaks that overlap at that point.
In addition to the conventional parameters in the least-squares procedure
(i.e. scale factor, atomic coordinates and temperature factors), additional
parameters are required: the lattice parameters (which determine the positions
of the reflections), a zero-point error for the detector, and three parameters that
describe the variation of the Gaussian half-width (full width at half maximum
intensity) with scattering angle. The technique has been applied to a wide range
of solid-state problems and has been reviewed by several authors during the last
25 years (Cheetham and Taylor 1977; Hewat 1986; Young 1993).

The application of the Rietveld method to neutron data in the early 1970s
was soon followed by its extension to laboratory X-ray diffractometer data
(Malmros and Thomas 1977; Young et al. 1977). The problem of the more
complex peak shape was resolved by employing alternative peak-shape func-
tions, such as the Lorentzian and the pseudo-Voigt. Other problems that can
plague X-ray studies include preferred orientation and poor powder averaging
(graininess), both of which arise from the fact that X-rays probe a smaller
sample volume than do neutrons; these were addressed by paying closer
attention to the data collection strategy.

The accuracy and precision of a structure refinement from X-ray data can
normally be optimized by collecting high-resolution data at a synchrotron
source (Cox et al. 1983). The resolution of the powder diffractometers at second
and third generation sources is so good that sample imperfections now play a
major role in determining the shape of the Bragg peaks. This presents both
challenges and opportunities. For the crystallographer, the subtle variations in
peak shape from one class of reflection to another (which may stem from, say,
anisotropic particle size or strain effects) may be an irritation if the sole aim is to
obtain a high-quality refinement of the crystal structure. However, the materials
scientist may be delighted to retrieve a wealth of additional information per-
taining to the microstructure of the sample.

Refinement by the Rietveld method is now commonplace with both labora-
tory and synchrotron X-ray data, although it is not, in general, as precise as the
neutron method (Table 2.3). There are three reasons for this. First, as men-
tioned above, it is more difficult to collect X-ray data that are essentially free
from systematic errors. Consequently, it is not unusual to find that the preci-
sion, as measured in terms of the estimated standard deviations (e.s.d.s), gives a
misleading impression of the real accuracy of the structure. Second, the fall-off
of intensity with scattering angle due to the X-ray form factor reduces the
quality of the information that can be retrieved from the high-angle region of
an X-ray pattern. Third, the wide variation in X-ray scattering factors between
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elements from different parts of the periodic table leads to considerable
differences in the sensitivities with which atoms can be located; in particular,
heavy atoms will be better defined than light atoms. In Table 2.3, for example,
the y coordinate of Cr(2) is determined with greater precision than the y
coordinate of O(2) by X-ray powder diffraction. This problem does not arise to
the same extent with neutrons because their scattering amplitudes (or scattering
lengths, as they are known) fall within a relatively narrow range of values
(Bacon 1975).

The Rietveld method was also extended to the analysis of time-of-flight
neutron powder data collected at pulsed sources. The procedure is essentially
the same as that used in constant-wavelength experiments, except that the peak
shape function is considerably more complex, due in part to the shape of the
neutron pulse, and wavelength-dependent corrections (e.g. absorption and
extinction) must be taken into account (Von Dreele ez al. 1982). One advantage

Table 2.3 Structural parameters for a-CrPO, refined using synchrotron X-ray (marked
X) and neutron (N) data in /mma with e.s.d.s in parentheses (Attfield et al. 1988). Values
from the reported single-crystal study (marked S) are given for comparison (Glaum
et al. 1986)

Atom x y z B2
Cr(1) 12 12 0 032N
0.283(6)S
Cr(2) 1/4 0.3660(3)X 1/4
0.3650(4)N 0.0(DN
0.36611(3)S 0.316(4)S
P(1) 12 1/4 0.0819(12)X
0.0790(8)N 0.0(HN
0.0825(2)S 0.30(1)S
P(2) 1/4 0.5738(4)X 1/4
0.57392)N 0.47(8)N
0.57358(5)S 0.345(7)S
o(1) 0.3790(10)X 1/4 0.2269(17)X
0.3766(3)N 0.2280(5N 0.53(8)N
0.3773(2)S 0.2268(3)S 0.42(2)S
o) 0.3603(6)X 0.4914(5)X 0.2145(11)X
0.3610(2)N 0.4907(H)N 0.2142(3)N 0.62(6)N
0.3611(1)S 0.4902(1)S 0.2146(2)S 0.42(1)S
003) 0.2263(6)X 0.6352(5)X 0.0576(10)X
0.2240(1)N 0.6368(2)N 0.0546(3)N 0.68(5)N
0.2238(1)S 0.6363(1)S 0.0552(2)S 0.56(1)S
0(4) 12 0.3509(8)X —0.0457(15)X
0.3486(2)N —0.0422(4)N 031(T)N
0.3496(2)S —0.0432(3)8 0.50(2)S

“For the powder X-ray refinement, overall Bis, = 0.24(7) A?
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of time-of-flight powder methods is that the whole diffraction pattern is
collected simultaneously since the counter, or bank of counters, remains sta-
tionary, making it an attractive way of following structural changes that evolve
as a function of time, temperature or pressure. In addition, since the incident
and scattered beams can pass through small apertures in, say, a high-pressure
apparatus, the design of special environments is clearly easier for such mea-
surements (Jorgensen 1988). A further advantage is that it is relatively easy to
obtain high-resolution data by using a long incident flight path and placing the
detectors in the back scattering position.

The Rietveld method is a powerful tool, but it is limited by the same draw-
back that affects powder methods in general: the loss of information that arises
from the compression of the three-dimensional diffraction pattern into a single
dimension. It is also important to underline the fact that the Rietveld method,
though an excellent technique for refining structures, requires a good starting
model if it is to converge successfully and does not, by itself, constitute a method
for structure determination. We shall now return to the question of solving
unknown structures and examine the state-of-the-art in this area.

2.6 Solving unknown structures from powder data

There has been a great deal of interest concerning the determination of
unknown structures from powder diffraction data during the last decade and
there have been several reviews of the subject (Cheetham 1986; Cheetham 1993;
Harris and Tremayne 1996). The process may conveniently be broken down
into a series of steps, though there may be considerable overlap between the
different stages:

(1) determination of the unit cell;

(2) decomposition of the powder pattern into integrated intensities, I,z
(3) assignment of space group from systematic absences;

(4) solution of the phase problem;

(5) refinement of the structure, typically by the Rietveld method.

Most of these stages are discussed in detail in more specialized chapters in this
book, so only a few general comments will be made at this stage.

Step 1, the indexing of the powder pattern to yield a unit cell, is normally
carried out by autoindexing methods, for which a number of powerful computer
programs are now available (see Chapter 7). These include ITO (Visser 1969),
TREOR (Werner et al. 1985) and DICVOL (Boultif and Louér 1991). Access to
more than one of these programs is desirable since they work in different
ways and successful indexing may not always be achieved with one particular
program; the key point is that successful indexing is facilitated by collecting
high-quality data. In practice, with careful instrument alignment, careful data
collection and accurate peak-position determination, it seems that few structure
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determinations stumble at the point of determining the unit cell. Of course, as
mentioned in Section 1.2 of Chapter 1, this situation may well change.

We should also note that the identity of the space group may become
apparent following the autoindexing stage, though uncertainties frequently
remain and must be resolved at a later stage (see below). In cases where the unit-
cell determination is proving difficult, it might be worthwhile to obtain selected
area electron diffraction patterns from microcrystals, noting that an electron
diffraction pattern is the equivalent of a zero-level precession photograph
with X-rays. The feasibility of this approach will depend upon the stability of
the sample in the beam, but the extra effort that it entails may be rewarded,
especially if there is a subtle superstructure to which powder X-ray methods
may not be sensitive.

The second step of the structure determination, the decomposition of the
pattern into individual integrated intensities, is often the most challenging one
because it is here that severe ambiguities may arise due to overlapping of peaks
(see Chapter 8). Such overlapping may be accidental or may be an unavoidable
consequence of the symmetry (e.g. the exact overlap of non-equivalent reflec-
tions in certain high-symmetry Laue groups). A number of powerful single-step
strategies that have been developed to address the pattern-decomposition
problem are now embodied in computer programs such as ALLHKL (Pawley
1981), WPPF (Toraya 1986), GSAS (Larson and Von Dreele 1987, incorpor-
ating the Le Bail method (Le Bail ez al. 1988)), LSQPROF (Jansen et al. 1992a)
and EXTRA (Altomare ez al. 1995). The earliest development in this area, due
to Pawley (1981), was based upon a Rietveld fitting procedure in which the
integrated intensities were refined in addition to the lattice parameters, peak-
shape parameters, etc. Le Bail’s method is closely related, but is somewhat more
robust in its treatment of overlapping data.

From this stage onwards, the analysis can mirror that of a single-crystal study.
In stage 3, the possible space groups can be assigned from the systematic
absences, although in cases of uncertainty it may be useful to carry out the
pattern decomposition in a number of alternative space groups (or to obtain a
series of electron diffraction patterns, as discussed above). Uncertainties often
remain (as they do with single-crystal methods) and may have to be resolved
during the structure solution and/or refinement steps. The phase problem is then
solved in stage 4 by conventional crystallographic methods, that is, Patterson or
Direct methods, the choice being dictated by the chemical nature of the material.
Early work in this area utilized programs that had been developed for the ana-
lysis of single-crystal data, but some Direct methods codes that are optimized for
powder data are now available, including EXPO (Altomare ez al. 1999) and
SIMPEL (Jansen et al. 1993) (see Chapters 10 and 11). Patterson determinations
are also benefiting from vector-search algorithms (see Chapters 12 and 13).

As with the solution of structures from single-crystal data, light atom
problems will normally respond better to Direct methods, while structures
containing a subset of heavy atoms will be more amenable to Patterson
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techniques. The principal difficulty is that, even if there are no ambiguities due
to peak overlap, the data set will be considerably smaller than that obtained in a
single-crystal study and the phasing procedure will be less straightforward. It
is a tribute to the robustness of modern structure-solving techniques that it is
still possible to determine structures under these unfavourable circumstances.
Once a suitable starting model has been obtained, stage 5, the refinement of the
structure, can proceed by using the Rietveld method. Quite commonly, the
starting model will be incomplete and additional atoms will be found during
the refinement procedure by using difference Fourier methods.

More recently, the probability of solving a structure from powder data has
improved because there has been a move towards the development of pattern-
decomposition methods that are more sophisticated. Typically, these new
methods are not single-step procedures, but involve an iteration between the
pattern-decomposition step and the subsequent Patterson or Direct methods
calculations. For example, the observed intensities that are obtained from a
successful pattern decomposition should yield a Patterson map that fulfils
certain requirements; for example, it should be positive at all points. Some of the
codes that link the pattern decomposition and the structure-solving stage are
DOREES (Jansen et al. 1992b) and FIPS (Estermann et a/. 1992; Estermann
and Gramlich 1993), and those based upon maximum entropy (David 1987,
1990) and Bayesian fitting procedures (Sivia and David 1994). A potentially
powerful approach is the use of entropy maximization and likelihood ranking
(Bricogne and Gilmore 1990; Gilmore et al. 1993), a method that has been used
in other areas of crystallography and has now been adapted for powder data in
the MICE computer program (Gilmore ez al. 1990; see also Chapter 14).

2.7 Trial-and-error and simulation methods

In addition to the systematic approaches described above, there has been a long-
standing tradition of solving unknown structures from powder data by trial-
and-error methods. A typical example can be seen in the work of Titcomb ez al.
(1974), who solved the superstructure of the metal hydride phase, CeH, 4, by
exploring all of the possible arrangements of the interstitial hydrogens in the
fluorite-related parent structure. The fluorite-related structure of Bi;ReOg was
solved in a similar manner (Cheetham and Rae Smith 1985). The starting
models obtained by trial-and-error were then refined by the Rietveld method. In
this approach, it is clearly advantageous (and often essential) to use information
that may be available from other studies on the material of interest. In Bi3sReOg,
for example, it was known from infra-red measurements that the oxygen
coordination around the rhenium atom was tetrahedral. Similarly, model-
building, together with information from electron microscopy and *’Si magic
angle spinning NMR, was used to elucidate the structure of the molecular sieve
zeolite, ZSM-23 (Wright er al. 1985).
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The manual trial-and-error strategy is not very attractive, since it can be very
time-consuming and the chances of success are not particularly high. However,
modern simulation methods, together with the power of modern computers, can
be used to remove much of the labour and uncertainty from this approach by
automating the way in which previous knowledge of a system, or related sys-
tems, is used. In the zeolite area, for example, Deem and Newsam (1989) have
developed a simulated annealing method that can be used to predict unknown
zeolite structures from a knowledge of the unit cell, the space group, and the
number of tetrahedral Si/Al (T) sites in the cell. In cases where the space group
or number of T sites is uncertain, the calculation is sufficiently fast for alter-
native possibilities to be tested. The simulation procedure employs cost func-
tions that depend upon the T-T distances and T-T-T angles in a large body of
known zeolitic structures. Further refinement of this approach involving
the implementation of a biased Monte Carlo scheme was reported recently
(Falcioni and Deem 1999).

Molecular crystals, too, lend themselves naturally to simulation methods,
since their molecular structures (or fragments thereof) are often known with
some confidence. We can use prior knowledge of the molecular structure (or an
energy-minimized molecular structure obtained by quantum mechanical cal-
culations) and move the molecular fragment by translations and rotations
within the unit cell using algorithms ranging from simple grid search to simu-
lated annealing and genetic algorithms (see Chapters 15 and 16). Knowledge of
the space group is again required, of course. The crystal structure can be
predicted by using energy functions based upon appropriate inter- and
intra-molecular potentials, or by comparison between the calculated and
observed X-ray powder patterns. Approximate models can then be refined by
the Rietveld method. Examples of structures solved in this manner include
piracetam, CgH;gN,O, (Louér et al. 1995) and 1-methylfluorene, C4H;,
(Tremayne et al. 1996). The approach is very straightforward for rigid mole-
cules, but becomes considerably more difficult as the number of degrees of
freedom increases. Nevertheless, algorithmic developments have led to a
situation where the crystal structures of relatively flexible molecular moieties
can be solved quite straightforwardly (see Section 2.8 and Chapters 15 and 16).

2.8 Some examples of structure determination from powder data

A great deal of the development work in the field of structure determination
from powder data has relied on the use of conventional, laboratory X-ray
sources, and there were a number of important early successes in the area (Berg
and Werner 1977; Clearfield ez al. 1984). However, synchrotron X-ray data has
profound advantages over conventional X-ray data for structure determination.
In particular, the combination of the high brightness and excellent vertical
collimation can be harnessed to construct diffractometers with unparalleled
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angular resolution, as in the case of the instrument at the National Synchrotron
Light Source (NSLS), Brookhaven National Laboratory (Cox et al. 1986),
where the resolution at the focusing position is <0.02° in 26. This is partly
achieved by constructing the instrument in the vertical plane, since the vertical
divergence, 0,, is only ~0.01° at 2.5 GeV. With high-resolution data, the solu-
tion of structures from powder data is greatly facilitated because ambiguities
due to peak overlap are minimized and the information content of the dataset is
optimized. Many successful structure solutions and refinements have now been
performed, a selection of which is given in Table 2.4. On the other hand, rela-
tively few structures have been solved from powder neutron diffraction data.
This is partly a consequence of the lower resolution of most neutron dif-
fractometers, but it is mainly due to the near equivalence of the neutron scat-
tering lengths for most elements, as a result of which the phase problem cannot
be solved on the basis of locating a small subset of atoms. Some recent examples
of structure solutions from neutron diffraction data, obtained by the applica-
tion of both Direct methods and global optimization strategies, are discussed in
Chapter 5.

Table 2.4 Some examples of ab initio structure determinations from synchrotron X-ray
powder data

Compound Space group No. of atoms in Ref.
asymmetric unit

a-CrPOy Imma 8 1

1204 le/C 6 2
A12Y409 le/C 15 2
MnPO, - H,O e 6 3

PbC,0,4 Pl 7 4
Clathrasil, Sigma-2 4 /amd 17 5
LaMosOs P2y/a 14 6
BeH, Ibam 4 7,8
UPd,>Sn Pnma 4 9
CsH,,NO, Pna2, 19 10
NaCD; 222 10 11

C10N6SH16 le/l’l 33 12
BaBiO, 5 P2,/c 5 13
(VO)3(PO,), - 9H,0 P2/n 13 non-H 14
CuPt;04 Pn2im 10 15
Ga,(HPOs); - 4H,0 P2, 29 16
La3Ti5A115037 Cc 60 17

1 = Attfield er al. 1986; 2= Lehmann et al. 1987; 3 =Lightfoot et al. 1987; 4 = Christensen et al.
1989; 5=McCusker 1988; 6 =Hibble et al. 1988; 7=Smith ef al. 1987; 8 = Smith er al. 1988;
9 =Marezio et al. 1988; 10 =Kurahshi ez al. 1989; 11 =Weiss ef al. 1990; 12 =Cernik ef al. 1991,
13 =Lightfoot ef al. = 1991; 14 =Teller et al. 1992; 15 =Hriljac et al. 1991; 16 = Morris et al. 1992;
17 =Morris et al. 1994
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In the first example of a structure solved from synchrotron X-ray powder
data, carried out in 1986 by Attfield ez al. (1986), the orthorhombic structure of
a-CrPQ,, with eight atoms in the asymmetric unit, was solved by Patterson
methods using a vector-search procedure; 68 well-resolved peaks were utilized.
A relatively poor R,-factor (19.3 per cent) was obtained for the final Rietveld
refinement with the synchrotron data, no doubt due to problems with preferred
orientation and hkl-dependent line-broadening effects, but a subsequent
medium resolution neutron study (on D1la at ILL Grenoble) gave an excellent
fit (R, = 8.3 per cent), confirming the correctness of the X-ray model. A com-
parison of the coordinates obtained from the X-ray and neutron refinements,
and a subsequent single-crystal study, was given in Table 2.3. In particular, we
note that the neutron refinement gives improved precision for almost all atoms,
in spite of the modest resolution of the neutron data.

During the last decade, there has been widespread use of synchrotron powder
methods to solve unknown structures (Table 2.4), the most striking develop-
ment being the extension of the method to systems of very considerable com-
plexity, with as many as 60 atoms in the asymmetric unit of the cell (Morris ef al.
1994). Such complex structures normally require a combination of both syn-
chrotron X-ray and neutron data for their solution and refinement, since they lie
at the limit of what can currently be done with a single dataset. With the advent
of global optimization methods, challenging ‘equal atom’ organic structures are
also being solved. However, subsequent refinement is not trivial. Some recent
examples include forms A and B of famotidine and the nitrate and acetate salts
of remacemide (Admans 2000), and the disordered structure of tetraferrocenyl-
[3]-cumulene (Dinnibier ez al. 2000).

The ease of access to good laboratory diffractometers, however, has
encouraged an even greater effort with laboratory data. Structures of high
complexity have been solved (e.g. 5-BazAlFo, with 29 atoms in the asymmetric
unit (Le Bail 1993)), and there has been extensive use of the methodologies
in the areas of molecular organic crystals, coordination compounds and
organometallic materials (most of the effort in the powder diffraction area
has traditionally been in the realm of non-molecular inorganic materials).
Eye-catching examples include recent work on bipyridyl complexes of nickel
and copper (Masciocchi er al. 1996), the carbonyl cluster compound
[HgRu(CO),ly (Masciocchi et al. 1993) and Ph,P(0)-(CH,);-P(O)Ph, (Kariuki
et al. 1999).

2.9 Conclusions

The role of powder diffraction in the structural characterization of materials
has expanded dramatically during the last 30 years. A number of developments
have played important roles: (a) the advent of the Rietveld refinement method,
(b) improvements in laboratory X-ray instrumentation, (c) the availability of
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high-resolution powder diffractometers at pulsed neutron sources and syn-
chrotron sources, (d) advances in computational methods for structure solu-
tion, and (e) improvements in computer hardware (e.g. personal computers that
are capable of running Rietveld codes). The power of powder techniques is such
that they have had an impact in most of the major developments in the field of
new materials during recent years; solid electrolytes, high-temperature super-
conductors, fullerenes, zeolites and giant magnetoresistance (GMR) materials
are obvious examples. As a consequence, powder diffraction has been trans-
formed from the ugly duckling of crystallography into one of the most exciting
and fast-moving areas.

Notwithstanding the remarkable progress, much work remains to be done.
The solution of unknown structures from powder data is by no means routine,
and the methods need to be further automated before they can be used by non-
specialists, even those with crystallographic experience. Furthermore, there is
considerable scope for advances in refinement procedures, in spite of the power
of the Rietveld method. For example, some of the complex structures that are
now being solved are at the limit of what can be refined by current procedures.
As a consequence, the accuracy of many of these more complex structures falls
well short of what we would hope for and aspire towards. This can easily be seen
by looking at the bond lengths that are obtained from refinements of complex
organic or zeolitic materials; it is not unusual to find interatomic distances
that are clearly outside the range that would be considered to be chemically
acceptable.

The solution to this problem will no doubt come from several areas. First, it
will become possible to collect better data, and more of it, especially with access
to short X-ray wavelengths at the third-generation synchrotron sources (sys-
tematic errors in X-ray data can be dramatically reduced at shorter wave-
lengths). Second, the simultaneous analysis of X-ray and neutron data is already
having an impact, but we shall no doubt see the use of data from other tech-
niques such as solid state NMR and EXAFS. In addition, advances in com-
putation are taking us towards a scenario where energy minimization will
become a part of the refinement procedure. For example, it is already clear that
we can sometimes calculate the structure of an all-silica zeolite with better
accuracy than we can determine it experimentally by powder X-ray diffraction
(Cheetham ez al. 1997). Finally, we shall see the use of more subtlety in the
refinement process, such as the more extensive use of maximum-entropy
methods (Sakata ez al. 1990, 1993).

This overview would not be complete without reference to the developments
in single crystal methods that may have an impact on powder crystallography.
The construction of third-generation synchrotron sources has, once again,
focused attention on the possibility of collecting X-ray data from micron-size
crystals. Progress in this area has not been as rapid as many had expected, but a
recent example from the European Synchrotron Radiation Facility (ESRF) in
Grenoble (Noble ez al. 1997) may offer a glimpse of future possibilities in this



26 OVERVIEW OF STRUCTURE DETERMINATION

area. Certainly, the use of dedicated synchrotron X-ray stations equipped with
CCD type detectors (such as Station 9.8 at the Daresbury Synchrotron
Radiation Source (SRS)) is transforming expectations of what can be achieved
in terms of structure determination from very small crystals. Nor should we
forget the power of the electron microscope for interrogating small crystals.
There have been several examples (e.g. Vincent ez al. 1984; Tsuda and Tanaka
1995) of structure refinements by using higher-order Laue zones (HOLZ) from
convergent beam electron diffraction patterns, and this area is likely to
attract further attention. Nevertheless, the current capabilities and the exciting
opportunities for the future can leave us in no doubt that powder diffraction
will continue to play a dominant role in this area for the foreseeable future.
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Laboratory X-ray powder diffraction

Daniel Loueér

3.1 Introduction

The majority of moderately complex crystal structures determined using
powder diffraction data have been obtained from conventional laboratory-
based X-ray diffractometers. Indeed, it was laboratory-based instrumentation
that provided the impetus in the early stages of the modern development of the
powder method. Although synchrotron radiation offers higher resolution and
higher count-rates, modern in-house X-ray powder diffractometers with opti-
mized optics offer sufficient resolution, precision and count rate to permit
successful structure solution. Adequate resolution and peak precision are cru-
cial in the three principal stages involved in crystal structure determination from
powder data: (a) the determination of lattice constants and use of systematic
absences to give space group information, (b) the extraction of structure factor
magnitudes for solving the phase problem and elaborating a structure model,
and (c) the refinement of structural parameters such as atomic coordinates to
give the best fit to the observed data.

This chapter describes the performance and limitations of laboratory-based
X-ray diffraction instrumentation for solving crystal structures ab initio from
powder data. Examples are presented to illustrate the methods and to indicate
the precision of the results obtained. The impact of conventional X-ray powder
diffraction structure solution is discussed and compared with single-crystal
analysis.

3.2 The reflection overlap problem

The essential difference between single-crystal and powder diffraction is the
loss of information that results from the rotational projection of the three-
dimensional grid of reciprocal lattice points on to the one dimension of a
powder diffraction pattern. This feature is often aggravated by line broadening
arising from structural imperfections. The degree of reflection overlap becomes
increasingly severe with increasing angle, because the number of diffraction
points varies as d** (d* =2sin6/)\). This theoretical number (N) is given by
the number of possible lattice points for which d* is less than dj and is
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approximately equal to the volume of a sphere with radius dj, divided by the
volume V* of the reciprocal unit cell, weighted by the number of symmetry-
equivalent reflections m (e.g. m =2 for triclinic symmetry):
A4n(dy)’
N Ay (3.1)
Extracting integrated intensities is thus a pattern decomposition process (see
also Chapter §). The intensity of each reflection in reciprocal space has a three-
dimensional shape, which is projected onto the single 26 dimension of a powder
diffraction pattern to yield a peak profile with the contribution H,,(26;) at point
20;. Thus, the discrete intensity y measured at point 26, is given by summing the
contributions of all Bragg reflections to this point

2(200) = Hua(26)). (3.2)

hkl

Recovering the individual components, H;;(26), is a systematic procedure
involving the decomposition of a powder pattern into its individual reflection
profiles, without any reference to a structural model. This approach is used in
the course of the structure analysis at two stages: (a) to extract peak positions
for pattern indexing, and (b) to obtain integrated intensities for structure-model
determination.

Obviously, the degree of peak overlap can be substantially exacerbated by
line broadening. This takes the form of a convolution of the instrumental profile
function g(26), including the wavelength-dispersion contribution, with a sample
profile function f},;/(26) that contains information on the microstructure of the
sample. The breadth and shape of the individual components observed in the
pattern are then influenced by the combination of instrumental broadening and
the microstructure of the sample:

Hy(20) = fiea (20) * g(20). (3.3)

The use of the pattern decomposition technique in the preliminary stages of the
structural study may give an indication of the hkl-dependence of line breadths
and shapes, which ideally should also be incorporated into the refinement step.

3.2.1 Instrumental broadening—g(260)

Instrumental resolution is a major factor in structure determination from
powder data. Good resolution can help to minimize the reflection overlap
problem as long as sample broadening is not significant. Instrumental line
profiles arise from the distribution of wavelengths in the incident beam, con-
voluted with several functions resulting from the geometry of the instrument,
such as beam divergence, the finite width of source and receiving slit, specimen
transparency and residual misalignment. Both the breadth and shape of
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Fig. 3.1. FWHM versus 20 for annealed BaF, standard specimen. (o) Conventional
diffractometer with an incident-beam monochromator tuned to CuKe; radiation (from
Louér and Langford 1988), (A) High resolution powder diffractometer on station 9.1 at
the Daresbury Laboratory SRS, A =1.4188 A (from Langford, Cernik and Louér 1991).

instrumental line profiles vary continuously with 20 for conventional angle-
dispersive X-ray diffractometers. An example of the angular variation of full-
width at half-maximum (FWHM) for the commonly used Bragg—Brentano
geometry is shown in Fig. 3.1.

This instrumental resolution function (IRF) (FWHM versus 260) has been
obtained with monochromatic radiation (CuKay) from a sample of annealed
BaF, (Louér and Langford 1988) and shows a minimum of 0.062° 2¢ at inter-
mediate angles, increasing to twice this value at 130° 26 as a consequence of
spectral dispersion. For comparison, the IRF obtained from the same standard
material on the high-resolution powder diffractometer on station 9.1 at the
Daresbury Synchrotron Radiation Source (SRS) is given in Fig. 3.1.

In Rietveld structure refinement programs, the angular dependence of
FWHM is commonly modelled using a quadratic form in tanf. There are,
however, further subtleties in the angular dependence of the various compo-
nents of the instrumental profile, which can be revealed with the analytical
functions used to model the observed diffraction line profiles (see Table 1.2 in
Young (1995) for an overview of profile functions). Modern fundamental
parameters approaches offer a more rigorous peak-shape formulation (Cheary
and Coelho 1998). Whatever method is used, however, it must be stressed that
an accurate peak description is highly desirable if structure solution is to be
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Fig. 3.2. Variation of line-profile shape parameters with 26 for the Bragg—Brentano
geometry with monochromatic X-rays (see Fig. 3.3). m: Pearson VII index; 7: pseudo-
Voigt mixing parameter; ¢: Voigt parameter (= FWHM/(3, where ( is the integral
breadth), L: Lorentzian, G: Gaussian (from Louér and Langford 1988).

attempted. In Fig. 3.2, the variation of peak-shape parameters for Bragg—
Brentano optics with monochromatic X-rays reflects the Gaussian character of
2(20) profiles at low angles, where geometric aberrations are dominant, and the
almost Lorentzian contribution arising from the wavelength distribution at high
angles. Similar curves can be obtained for other sources of radiation and
geometries (e.g. Langford er al. 1991).

3.2.2  Sample broadening—f;(20)

Sample microstructure often contributes to diffraction line broadening. In fact,
samples with no physical line broadening are likely to contain crystals large
enough to perform single-crystal microdiffraction. The contribution resulting
from ‘size’ broadening is independent of the order of reflection, while ‘strain’
broadening is order-dependent. This means that broadening effects will become
increasingly severe at high angles and that the limit in sin 8/, from which there
is no reliable diffraction information, is directly influenced by the micro-
structural properties of the sample.

‘Size’ effects arise from the finite size of domains over which diffraction is
coherent, measured in the direction of the scattering vector. This can be the mean
thickness of individual crystallites, but it can also be related to a subdomain
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structure such as the distance between stacking faults in layer structures or the
distance between dislocations. The breadth of ‘size’ profiles is inversely pro-
portional to the mean apparent size in the direction of the scattering vector. The
true crystallite size can only be calculated if the crystallite shape is known. The
form of ‘size’ profiles depends on the crystallite size distribution, and for uni-
modal distributions, the shape is generally not Lorentzian (Langford ez al. 2000).

‘Strain’ broadening represents a variation of d-spacing between planes per-
pendicular to the direction of the scattering vector and is related to lattice
distortions arising from internal stress distributions, dislocations (see, e.g. Ungar
and Borbély 1996) or deviation from ideal stoichiometry.

Severe diffraction line broadening reduces the number of reliable integrated
intensities extracted from pattern decomposition, which can generally affect the
efficiency of the Direct methods for structure determination. The extraction of
integrated intensities being implicitly avoided with direct space approaches,
such methods may be less sensitive to line broadening (see, e.g. Bataille et al.
2004).

3.2.3 H(x) profiles

A variety of line shapes can be generated from the microstructure of the sample.
The observed profiles usually range from the Gaussian to the Lorentzian limits,
but high and ultra-high-resolution data have revealed profiles for which the
intensity in the tails decreases more slowly than a Lorentzian (e.g. Hastings ez al.
1984; Plévert and Louér 1990). Such super-Lorentzian shapes must be correctly
modelled for intensity extraction or Rietveld refinement either through a fun-
damental parameters approach or through the use of empirical functions such
as the Pearson VII with m <1 or the pseudo-Voigt with 5> 1. Moreover, to
reduce the loss of integrated intensity arising from truncation effects, the
observed intensity distribution, normally defined as 4+ k x FWHM relative to
the Bragg peak position, must be adapted to the line shape to incorporate most
of the line profile, for example, £ =63 to include 99 per cent of a Lorentzian
function, or k=3 for a Gaussian function (Toraya 1985). Residual truncation is
undesirable but often inevitable in the case of Lorentzian and super-Lorentzian
line shapes.

The precision of a structure determination will depend on how well the
complete powder diffraction pattern has been modelled. The physical para-
meters that describe the origin of sample-dependent line broadening should
ideally be considered as far as possible in pattern modelling. This is not an easy
task for anisotropic ‘size’ and ‘strain’ broadening (Delhez ez al. 1995), parti-
cularly for low-crystal symmetry, but some progress in this direction has been
made recently (Popa 1998; Stephens 1999).
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3.3 Instrumentation and experimental considerations

High resolution, good counting statistics and precise modelling of peak posi-
tions and peak shapes are essential for structure solution. The additional
information that they provide compensates to some extent for the loss of
information resulting from line broadening. The relative merits of different
X-ray optics used for collecting powder data have been discussed in some
reviews (e.g. Werner 1992; Baerlocher and McCusker 1994; Langford and
Louér 1996). Some of these instrumentation aspects are discussed in this section
with particular reference to their impact in structure solution.

3.3.1 Diffractometer geometries

Guinier focusing cameras were regularly used for obtaining structures in the
early period of ab initio structure determination from powder data. This was
because of their high resolution, the accuracy of measured diffraction angles
and the use of monochromatic radiation (e.g. Werner 1986). A representative
example of this early success is the complex structure determination of the
organomolybdate (NH4)4[(M00;)4,05](C4H305),- HO (Berg and Werner
1977). Powder diffractometers, however, have now largely replaced film
cameras in most laboratories. Both reflection and transmission geometries are
available for laboratory diffractometers.

Although reflection geometry using parafocusing Bragg—Brentano optics is
more popular, transmission geometry with thin film or capillary samples pre-
sents some definitive advantages for structural analysis and requires only a
small amount of sample. The technique is well suited to materials containing
only light atoms, but is less appropriate for strongly absorbing materials.
Furthermore, preferred orientation effects can be reduced significantly with a
capillary set-up. Representative examples of data collected in transmission
mode with monochromatic X-rays and a position-sensitive detector are: (a)
p-CH3C6H4SOZNH2 (nghthOt et al. 1992(1), C2H4N202 (nghthOt et al.
1992b) and lithium triflate LiCF;SO; (Tremayne et al. 1992), which were
studied using thin flat samples, and (b) piracetam (Louér et al. 1995), three
stereoisomers of the cyclic tetramer of 3-aminobutanoic acid (Seebach et al.
1997), and lithium borate LiB,O3(OH)- H,O (Louér ez al. 1992), which were
studied using capillary samples.

On the other hand, reflection geometry is suitable for strongly absorbing
materials since there is no absorption correction for a sample with an apparent
‘infinite’ thickness. The instrument configuration most commonly used with
conventional divergent-beam X-ray sources is based on the Bragg—Brentano
parafocusing geometry shown in Fig. 3.3.

The source (or focal point of an incident beam monochromator i.e. F in
Fig. 3.3), sample and receiving slit lie on the ‘focusing circle’, which has a radius
dependent on §. Coherently scattered X-rays from a flat sample then converge
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Fig. 3.3. Geometry of Bragg—Brentano diffractometer with incident beam monochro-
mator (M). X-ray tube focus (S), adjustable knife edge to cut off residual Ko, component
(F), axis of rotation (O), and detector (D).

on a receiving slit located in front of the detector. The detector rotates about the
goniometer axis through twice the angular rotation of the sample
(6/20 scans). Use of this geometry requires that several important points be
considered.

During a scan, the angle between the sample surface and the incident beam
changes, that is, the illuminated area of the sample changes. As a consequence,
the intensities are incorrectly measured at low angles if part of the incident beam
overshoots the sample and therefore cannot be diffracted. Hence, it is wise to
determine the angle above which the incident beam falls completely on the
sample surface and to collect the data below this angle using a narrower
divergence slit before the sample. This slit should be selected to ensure that the
incident beam does not extend beyond the sample area. The two (or more)
ranges then have to be scaled to one another. This procedure can be useful for
both intensity extraction and structure refinement.

In addition, the use of a flat sample tends to increase the impact of preferred
orientation. To reduce this effect, it is recommended that a side-loading sample
holder be used in order to avoid a smoothing action of the front surface of the
sample (Swanson ez al. 1964). Other techniques can also be used to reduce
preferred orientation; these include sieving to produce crystallites with sizes in
the range 5-10 um (Parrish and Huang 1983), spray drying (Smith ez a/. 1979) or
the admixture of an amorphous material.
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There is also increasing interest in applications for parallel X-ray beams in the
laboratory using, for example, graded multilayer reflective mirrors or poly-
capillary optics. It seems likely that they will have an impact upon structure
solution at the laboratory level in the near future.

3.3.2 Monochromatic radiation

Although the use of monochromatic radiation is desirable in diffraction
experiments operating in the angle-dispersive mode, the most widely used
radiation in conventional powder diffractometry is still the CuKa; » doublet.
Two diffraction patterns are thus recorded simultaneously, which contributes to
a further loss in resolution with increasing angle, particularly at moderate to
high angles. The favourable effect of monochromatic radiation can be seen from
the slightly broadened diffraction pattern of monoclinic Nd(OH),NO5 - H,0O
(Fig. 3.4), whose structure was solved from data collected with monochromatic
radiation (Louér and Louér 1987). However, CuKay  radiation has been used
successfully for structure determination of a number of materials. Repre-
sentative examples are Zr(ITPO,), - H,O (Rudolf and Clearfield 1985) and the
complex structure of 3-Ba;AlF (Le Bail 1993).

Better resolution can be obtained by means of a focusing monochromator
(Louér and Langford 1988). There is some reduction in the intensity of the Ko
line, but this can be partially compensated for by using high-power X-ray tubes.
Some residual Ko, component (a few percent of the original component) is
often observed at the focal point of the monochromator. This can be eliminated

T T T T T T T T T T

(a)

Intensity

(b)

T T T T T T T T T T

42 44 46 48 50 52 54 56 58 60
200°)

Fig. 3.4. Diffraction pattern of monoclinic Nd(OH),NO; -H,O. (a) Germanium
incident-beam monochromator, Cu K. (b) Graphite diffracted-beam monochromator,
Cu KOél)z.
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by incorporating a knife-edge (slit F in Fig. 3.3) that leaves the K« component
unaffected. Typically, powder data up to 150° 26 can be collected with good
counting statistics within 48 h. An example of powder diffraction data for
U,0(POy),, used for ab initio structure solution (Bénard ez al. 1996), is shown
in Fig. 3.5.

Several advantages of using monochromatic radiation have been listed by
Louér and Langford (1988). These include (a) the number of contributing
reflection positions is halved with respect to the K« , radiation, (b) instrumental
line profiles can be readily modelled with a single analytical function and a
minimum FWHM of ~0.06° 20 can be obtained (Fig. 3.1), (c) the shape
of instrumental g(x) profiles varies with angle in a straightforward manner
(Fig. 3.2), and (d) the background is low and is essentially constant over a wide
angular range.

3.3.3 Data quality

High-quality data are essential for structure solution. Diffractometers must be
well-aligned and tested using standard materials. In addition to high instru-
mental resolution, peak positions must also be precise, for both indexing and
Rietveld refinement. The principal errors in peak position are zero-point shift
and displacement of the specimen. If they are not eliminated at source or
properly modelled, experimental imperfections are introduced in the Rietveld
refinement.

The quality of the diffractometer alignment can be evaluated from standard
reference materials. For example, synthetic fluorophlogopite mica (SRM 675
from NIST, basal spacing dyg; =9.98104 +0.00007 A), is suitable for diffraction
in reflection geometry. With a thin sample and a high degree of preferred
orientation of the crystallites, ten 00/ reflections are observed in the angular
range 8—135° 20 for Cu K radiation. Differences between observed and cal-
culated peak positions of less than ~0.005° 26 can be reasonably obtained with a
conventional, well-aligned powder diffractometer (Louér 1992). This precision
is excellent for routine indexing of most powder diffraction patterns for mate-
rials with moderate unit-cell volumes (< ~3000 AS).

Although precision in peak position and good diffractometer alignment are
essential, counting statistics should not be neglected (a relative standard
deviation of 1 per cent is obtained for a counting rate of 10 000). Good counting
statistics contribute to stable pattern decomposition and Rietveld refinement.
High-quality data can reveal subtle structural details such as the influence of
hydrogen atoms on the precision of bond lengths within an oxalate group in the
structure of YK(C,04),-4H,0, which was solved ab initio from powder
diffraction data (Bataille et al. 1999).
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Fig. 3.5. Powder diffraction pattern of diuranium oxide phosphate, U,O(POy),, collected
with a high-resolution Bragg—Brentano diffractometer (see Fig. 3.3) with an incident-
beam monochromator tuned to Cu K radiation.
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3.3.3.1 Unit-cell determination

Instrumental resolution, particularly at low angles, and the accuracy of
observed peak positions are the two crucial prerequisites for powder pattern
indexing. This can be understood from the definition of the figures of merit M5,
and Fyy (eqns (7.7) and (7.8) respectively in Chapter 7) used to assess the
reliability of an indexing solution. With higher resolution, more peaks can be
detected, particularly for low crystal symmetry. Lower discrepancies between
observed and calculated Q (= 1/d%) and 20 values will result if the diffracto-
meter is correctly aligned and care has been taken in determining peak positions.
With the performance of in-house powder diffractometers using monochro-
matic radiation, the quality of data is good enough to index most powder
diffraction patterns (see Louér 1992).

Examples of successful indexing of patterns of materials with large unit-cell
volumes include monoclinic BaTiO(C,04), - 4.5H,0 (¥ =2597 A?) (Louér et al.
1990), monoclinic sotalol (¥'=3131 A3) (Shankland and Sivia 1996) and cubic
[(CH3)4N]4Ge4S1g (V:7471/°%3) (Pivan et al. 1994). In general, the higher
angular precision and accuracy of powder diffractometers at synchrotron
sources give an additional improvement in the quality of the unit cell parameters
derived from the indexing procedures. Two examples of pattern indexing based
on both monochromatic (CuKay radiation) Bragg—Brentano data and data
collected on the two-circle diffractometer on station 2.3 at the SRS (A=
1.4039 A) are reported in Table 3.1 (Cernik and Louér 1993).

Higher figures of merit and lower average angular discrepancies (A26) are
observed with the synchrotron data. However, the values obtained with
conventional high-resolution diffractometers remain excellent, that is, (A20) =
0.0059° and 0.0038° 26 for laboratory data versus 0.0012° and 0.0016° 26 for
the synchrotron data. The powder data collected with conventional mono-
chromatic X-rays were in fact used to solve the crystal structure ab initio once
the correct space group had been assigned from scrutiny of the diffraction
pattern (Bénard ez al. 1991; Louér et al. 1988). For further discussion of space
group assignment, see Chapter 8, Section 8.4.

Table 3.1 Indexing comparisons from Bragg—Brentano (B-B) and synchrotron (SRS)
X-ray powder diffraction data ((FWHM) is the average full width at half-maximum,
in © 26, for the 20 lines) (from Cernik and Louér 1993)

VA My Py (FWHM)
Zr(OH)>(NO3), - 4.7TH,0 (triclinic)
B-B 530 54 112(0.0059,30) 0.100
SRS 533 295 635(0.0012,26) 0.047
KCaPO, - H,O (monoclinic)
B-B 460 72 107(0.0038,49) 0.077

SRS 460 156 259(0.0016,47) 0.044
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3.3.3.2  Data set of structure-factor magnitudes

Both Patterson and Direct methods of structure solution can be very sensitive to
the accuracy and resolution of the extracted structure factors. For example, the
Direct methods solution of the crystal structure of cubic thiogermanate
[(CH3)4N]GesS1o with a unit-cell volume of 7471 A% [a=19.5490(4) A,
Mo =60, F3q=112(0.0051,52), SG = P43n] (Pivan et al. 1994) exhibited sen-
sitivity to the resolution of the data set. Most of the E-maps derived from the
extracted structure factors revealed small but unconvincing fragments of the
structure. However, one data set collected up to 8§0° 26 yielded a partial model.
By taking into consideration the tetrahedral configuration of the GeS4 group,
eight of the 26 E-map peaks could be identified as being likely to be correct. The
model was completed from subsequent Fourier analysis. This type of sensitivity
to high-angle data is not unique to laboratory-based diffraction data—see, for
example, Chan et al. (1999) for a synchrotron-based example. One useful
indicator of the quality of the diffraction data is an estimate of the number of
statistically independent reflections present in the pattern. Altomare ez al. (1995)
and David (1999) have proposed such measures, based on a detailed study of
reflection overlap.

3.4 Examples of crystal structure solution

Partial compilations of ab initio structure determinations from laboratory X-ray
powder diffraction data have been reported by several authors (Cheetham 1995;
Langford and Louér 1996; Harris and Treymane 1996; Masciocchi and Sironi
1997). They include inorganic, organic and coordination materials. To illustrate
the different approaches available for data collection and their treatment, a few
representative examples are described here. Where appropriate, the precision of
results is also discussed. In all of these examples, powder pattern indexing was
carried out with the program DICVOL91 (Boultif and Louér 1991), using high-
resolution data collected in Bragg—Brentano mode. Space group assignments
were derived using the program NBS*AIDS83 (Mighell ef al. 1981). Different
instrumental setups were used for collecting powder data for structure solution
purposes, and different methods were used for solving the structures. All
calculations were carried out on a desktop computer using programs listed
elsewhere (see, e.g. Louér and Louér 1994).

3.4.1 Bragg—Brentano powder diffraction data

The structure of Zr(OH),SO,-3H,0 was solved from powder data collected
with monochromatic X-rays (CuKa;) and Bragg—Brentano geometry (Gas-
coigne et al. 1994). The pattern was indexed with a monoclinic unit cell (a=
8.3645(4) A, b=15.1694(9) A, ¢=54427(3)A, B=103.145(5)°, M,o=120,
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Table 3.2 List of the highest Patterson peaks (arbitrary scale) of Zr(OH),SOy - 3H,0
and their interpretation in terms of vectors between Zr atoms and Zr and S atoms

Peak u y w H Interpretation
Origin 0 0 0 1000

1 0 0.1486 0.5 232 Zr—Zr

2 0.6644 0.5 0.3592 202 Zr—Zr

3 0.3464 0.3538 0.149 104 Zr—Zr

4 0.0811 0.1388 0.518 78 Zr-S

F30=170(0.0037,48), Z=4, SG= P2,/c). Using the Le Bail pattern-decom-
position technique (Le Bail ez al. 1988 ; see Chapter 8), 579 integrated intensities
were extracted in the angular range 10-84° 26. The Zr and S atoms were located
by Patterson methods and the structure completed by Fourier recycling.

A list of the five highest Patterson peaks and their interpretation in terms of
vectors between Zr atoms and between Zr and S atoms is given in Table 3.2. The
presence of a Harker line at 0, % —2y, % (peak 1) and of a Harker section of type
2x, %, %Jr 2z (peak 2) gives direct information about atomic coordinates. Peak 3,
with half-multiplicity, corresponds to the components —2x, 2y, —2z, and peak 4
is a vector between Zr and S. The final coordinates in the refined structure are
x=0.8321, y=0.1757, z=0.4241 for Zr and x=0.7566, y=0.0360 and
z=10.9030 for S.

The electron density map, computed with the signs derived from the con-
tribution of the Zr and S atoms only, allowed all other non-hydrogen atoms to
be located. The refinement of the complete structure model, using data in the
range 15-135° 20, converged to give an Rp=10.03. The final Rietveld plot is
shown in Fig. 3.6. The maximum deviation of the S-O distances from the mean
value 1.477 A was £0.014 A and the O-S—-O angle varied in the range 107.3—
111.4°, values close to the distances and tetrahedral angles normally observed in
a sulphate group. In this example, the ratio of atomic numbers of Zr and O is
small and this explains why the atomic coordinates of the atoms are determined
with roughly equal accuracy.

In contrast, in the case of U(UO,)(PO4), (Bénard er al. 1994), the X-ray
powder data were dominated by the scattering contribution of the metal atoms
(the ratio of the atomic numbers of U and O is greater than 11). The quality of
the diffraction pattern was, however, satisfactory and the structure could still be
solved. At the end of the final Rietveld refinement (Rp=0.04, R,,,=0.14), a
significant distortion of the phosphate group was observed, with P-O distances
ranging from 1.46 to 1.62 A. By using neutron diffraction data, where the
neutron scattering lengths for U and O are in the more favourable ratio of
~1.45, Rietveld refinement yielded P—O distances in the range 1.510-1.565 A,
which are in good agreement with the distances usually found in structures
solved from single-crystal data.
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Fig. 3.6. The final Rietveld plot of Zr(OH),SO,4-3H,0, CuKa; radiation (Rp=0.03,
R,,=0.11) (from Gascoigne ez al. 1994).
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3.4.2 Debye—Scherrer powder diffraction data

Transmission geometry is suitable for weakly absorbing specimens (typically
materials containing only light atoms) and Debye—Scherrer geometry with
focusing optics was used for both examples in this section. Monochromatic
radiation (CuKa;) was selected with an incident-beam curved-quartz mono-
chromator with asymmetric focusing (short focal distance 130 mm, long focal
distance 510 mm). A 0.5 mm diameter glass capillary was mounted at the centre
of the goniometer and data were collected using a cylindrical position-sensitive
detector (INEL CPS120), which allows a simultaneous recording of a powder
pattern over a 120° 26 range. This wide-angle detector consists of 4096 channels
with an angular step of ~0.03° and requires careful angular calibration. To
minimize angular errors, a self-calibration by the materials themselves was
carried out after collecting reference data sets from thin deposits of the materials
on silicon plates using a high-resolution Bragg—Brentano diffractometer.

3.4.2.1 Lithium diborate hydrate

The diffraction pattern of lithium diborate hydrate, LiB,O;(OH)-H,0, was
indexed with an orthorhombic unit cell (a=9.798(1) A, b=8.2759() A, c=
9.6138(8) A, Myq3=>56, F3,=109(0.0081,34), SG= Pnna). Structure-factor
moduli were extracted for sin 6/ < 0.48 Al using the Le Bail pattern-decom-
position procedure and the structure was solved using Direct methods. Although
the solution was originally obtained with the program MULTAN, the powder
data have since been reanalysed with SIRPOWO92 (Altomare et al. 1994). The
number of ‘independent observations’ (Altomare et al. 1995) in the dataset was
calculated to be 173, about 47 per cent of the total number of reflections present.

All non-hydrogen atoms were found in the top E-map, with (a) peaks
corresponding to O atoms exhibiting a relative intensity in the range 99-100,
(b) peaks corresponding to B atoms exhibiting a relative intensity in the
range 56-53 and (c) the Li atom exhibiting a relative intensity of 27. The
corresponding R factor obtained from SIRPOW was 0.07. A projection of
the structural model found by the Direct methods is compared to the final
refined structural model in Fig. 3.7. Large fragments of the structure are clearly
recognizable in Fig. 3.7(a). For example, tetrahedra 9 and 4 correspond to the
boron atoms B(3) and B(1) (Fig. 3.7(b)) and peak 7 corresponds to the triangle
centred on B(2). The final Rietveld refinement converged to the structure-model
indicator Rr=0.05.

More recently, the crystal structure of LiB,O3(OH)-H,O has been solved
again from single-crystal data collected up to sin 6/A=0.807 Al (Louér ez al.
1997), which is considerably higher than the limit of the powder data
(0.48 A1), The results were essentially the same at each of the three stages of the
structural analysis. However, due to the higher resolution of the single-crystal
data set, a higher precision on the atomic coordinates was obtained and, on
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Fig. 3.8. The molecular structure of piracetam.

average, the results agreed within 1 combined standard uncertainty (s.u.) for x
and z and 2 combined s.u. values for y.

3.4.2.2 Piracetam

The organic compound (2-Oxo-1-pyrrolidinyl)acetamide (piracetam, Fig. 3.8) is
a drug substance with potential applications in a number of therapeutic areas
(Gouliaev and Senning 1994).

Three polymorphs are known. The structures of the triclinic (P1) and
monoclinic (P2;/n) phases have been determined from single-crystal data,
showing that the conformation of the piracetam molecule is nearly identical in
both phases. The third phase (form I) is formed as a result of a phase trans-
formation of one of the stable phases upon heating at 135°C. At room tem-
perature, this third phase is stable for only about 2 h. Powder diffraction data
could, however, be collected using Debye—Scherrer geometry combined with a
curved position-sensitive detector. For organic materials such as piracetam,
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diffraction peaks usually fade quickly with increasing angle, vanishing at
moderate angles (~60° 20 with CuKe; radiation). Thus, whilst pattern
indexing and space group assignment were successful (a=6.747(2) A,
b=13.418(3) A, c=8.090(2) A, Moy =25, F3o=49(0.0145,42), SG = P2,/n), the
application of Direct methods failed to solve the structure of the metastable
polymorph.

An alternative approach for the crystal structure solution of such organic
phases is to use real-space methods in which structure models are postul-
ated and either (a) optimized with respect to the powder diffraction data or
(b) optimized with respect to another function and then verified against the
powder diffraction data. These real-space approaches are discussed further in
Chapters 15 and 16. For the metastable polymorph of piracetam, the atom—
atom potential method, introduced by Kitaigorodsky (1973), was used (Louér
et al. 1995). The method assumes that the molecular conformation is known and
involves searching for the most favourable crystal packing constrained by the
known unit-cell dimensions and space group symmetry. The six-parameter
space of molecular rigid-body translations and rotations is explored globally in
order to find the lowest minima of crystal-lattice potential energy. The unique
region of this space (Hirshfeld 1968), an analogue to the asymmetric unit cell, is
used to span the grid of starting points for energy minimization. The energy is
calculated using empirical atom-atom potential functions fitted to predict the
known crystal structures of the given chemical class (Pertsin and Kitaigorodsky
1986). While the systematic search normally requires extensive computer work,
further restrictions imposed on the searchable space, and even its dimensionality,
are frequently possible due to chemical intuition. For example, considerable
computational effort is saved in the case of molecular organic compounds by
incorporating the knowledge that only some hydrogen-bonded motifs are
probable. Computational details and examples have been reported in several
articles (e.g. Williams 1991; Dzyabchenko et al. 1996). The method was first
applied to the two known piracetam polymorphs, showing that the optimized
and observed structures were in fair agreement with one another (Dzyabchenko
and Agafonov 1995). This information was then used to predict the structure of
the metastable phase. As a result of packing calculations, two distinct energy
minima (—100.78 and —87.29 kJ mol ') were found, suggesting the existence of
two additional polymorphs of piracetam. However, only the higher energy
structure matched the experimental powder data, the structure rapidly con-
verging to an Rz=0.04 in a Rietveld refinement (Louér ez al. 1995). (Recently,
Fabbiani et al. (2005) succeeded in obtaining single-crystal X-ray diffraction
data at 150 K from a single crystal of form I. From their structure determina-
tion, the authors concluded that ‘our crystal structure of form I is in very
good agreement with the structure obtained from the previous powder diffraction
study’.) This approach was also applied in a recent study, in which
crystal-packing calculations and laboratory X-ray powder data were
combined to elucidate the structure of a modification of 4-amidinoindanone



46 LABORATORY X-RAY POWDER DIFFRACTION

guanylhydrazone (Karfunkel ez al. 1996). Alternative direct-space methods,
employing search methods such as simulated annealing, are now popular in the
study of organic materials. Sophisticated software is available and it has been
proved that high-quality laboratory (capillary) powder X-ray diffraction data
are sufficient for successful structure solution of flexible molecules (e.g. Andreev
and Bruce 1998; Engel ez al. 1999; Giovannini et al. 2001).

3.5 Conclusions

Laboratory-based X-ray powder diffractometers are sufficient for structure
solution of moderately complex crystal structures. Even if higher resolution
proves to be essential, in-house diffractometers still offer an inexpensive
preliminary stage in the study of more complex structures. For example, better
use of valuable synchrotron beamtime is assured if the material under study can
be indexed and the space group determined using a laboratory source. Tuneable
synchrotron radiation, coupled with ultra-high instrumental resolution, clearly
dominates the frontiers of structure solution. However, the sheer number of in-
house diffractometers relative to synchrotron-based powder diffractometers
means the impact of ab initio structure determination from conventional X-ray
sources will continue to be considerable.
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Synchrotron radiation powder diffraction

Peter W. Stephens, David E. Cox and Andrew N. Fitch

4.1 Introduction

Synchrotron radiation is the most powerful source of X-rays currently available
for powder diffraction experiments. The combination of high intensity, intrinsic
collimation and a continuous wavelength spectrum leads to a large number of
significant advantages over laboratory sources. The basic properties of syn-
chrotron radiation and their concomitant features for X-ray diffraction are
covered in many reviews (see, e.g. Coppens 1992). The spectral intensity
(photons/s per solid angle per fractional bandwidth) of several synchrotron
sources currently in use for powder diffraction experiments are compared with a
typical fixed-target X-ray tube in Fig. 4.1. The advantages of the former are
clear. There is an even greater discrepancy between the brightness (intensity
divided by source size) of X-ray tubes and synchrotrons, not to mention that
between the various synchrotron radiation sources. Furthermore, special inser-
tion devices, known as undulators, which produce far greater spectral bright-
ness in the X-ray regime, are available, especially at so-called third-generation
storage rings. While most structure solutions from powder diffraction data
are currently performed with samples sufficiently large that intensity, rather
than brightness, is the figure of merit for the source, it is likely that improved
source characteristics will have a significant impact on powder diffraction in
the future.

In principle, one might use such a source to illuminate a sample to obtain a
signal several orders of magnitude larger than that produced with a standard
laboratory source. However, it is more often applied to increase the resolution
(in 20) beyond that of a conventional laboratory diffractometer. The flux at
the sample position of a sealed-tube diffractometer is typically 2.0 x 10°
photons/s compared with 1.0 x 10! at a typical synchrotron powder diffraction
station. The difference between the ratios of source intensity to flux at the
sample position is due to differences in the optics.

This chapter is devoted to a discussion of how powder diffraction experi-
ments can take advantage of the properties of a synchrotron source, and to
considerations of how the data are best processed, with a particular emphasis on
structure solution. The final part of the chapter reviews a number of ‘typical’
structure solutions utilizing synchrotron powder datasets.
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Fig. 4.1. Spectral intensity versus energy for several synchrotron sources, compared with
that of a Cu X-ray diffraction tube. Computations courtesy of Steve Hulbert (storage
rings) and John Gilfrich and Charles Dozier (X-ray tube) according to the techniques
described in Hulbert and Weber (1992), Brown and Gilfrich (1971), and Brown et al.
(1975).

The higher resolution leads (sample permitting) to sharper, better-resolved
peaks. Peak positions can thus be determined more accurately. This is particu-
larly favourable for indexing powder patterns and assigning the correct space
group in the initial stages of structure solution. In profile fitting and anal-
ysis, precise knowledge and consequent control of lineshape is important for
Rietveld refinement, but essential for ab initio structure solution. The entire
philosophy of Rietveld analysis is to minimize the impact of overlapping reflec-
tions; unresolved peaks may reduce the amount of information to some degree,
but do not generally compromise the ability of the technique to reach a satis-
factory state of convergence. However, because many of the techniques of
structure solution, for example, Patterson maps and Direct methods, are based
on knowing the intensity of each individual reflection, they are much more sen-
sitive to the loss of this information. Similarly, if there are systematic differences
between the experimental data and the theoretical lineshape used in a refine-
ment, these will degrade the profile R-factor achievable in a Rietveld refinement
without necessarily introducing significant bias in the result. When intensities
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are extracted for structure solution, however, the same systematic peak-shape
differences are likely to produce incorrect extracted intensities and introduce
additional unwanted correlations between the intensities of nearby peaks.

4.2 Synchrotron powder diffraction instruments in use for
ab initio structure determination

The most widely-used configurations for synchrotron powder diffractometers
that are best suited for ab initio structure solution are shown in Fig. 4.2.
A feature common to all of these instruments is that they use a crystal mono-
chromator, typically Si or Ge, to select a given wavelength from the synchrotron
beam. Another feature that is frequently encountered is a means of focusing the
X-ray beam on the sample, such as a mirror or bent-crystal optics. While no
environmental chambers are illustrated, such instruments can usually accom-
modate sample cryostats, ovens, and pressure cells. The intensity of the X-ray
beam from a storage ring decays with time, so the beam incident on the sample
must be monitored and the diffracted signal normalized accordingly.

The simplest configuration for a synchrotron radiation X-ray powder dif-
fractometer uses a single receiving slit as the resolution-determining element,
and is illustrated in Fig. 4.2(a). This is the configuration, for example, of
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diffractometer

‘- detector
slit
\ ~— sample
b “ion chamber
* double-crystal
monochromator

“—electron orbit

analyser -,

(c) D detector
Ldetector ., - collimator

\_\ ~~_sample ~— sample

- diffractometer

(b)

n

“diffractometer

~ position-sensitive

detector

\=/~ sample

\ diffractometer

(d) (e)
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Fig. 4.2. Sketches of several popular geometries for synchrotron powder diffraction
setups. (a) illustrates the basic components of a typical synchrotron beamline with a
simple detector slit, (b) is the analyser crystal geometry, (c) shows a parallel-blade
collimator, (d) an electronic position sensitive detector, and (e) an X-ray image plate.
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beamline 9.1 at the SRS in Daresbury (Langford ez al. 1991). Either a small
sample (such as a capillary), the image of the source on an extended sample
(such as a flat plate), or a second upstream slit on the detector arm can be used
to limit the angular divergence of the diffracted beam. Note that this is not
equivalent to the parafocusing condition of a typical laboratory X-ray powder
diffractometer, because the incident beam is not diverging. This design gives the
highest intensity, but does not have the high resolution and the insensitivity to
sample misalignment or transparency of the setups described below.

Fig. 4.2(b) shows a crystal analyser configuration, pioneered by Hastings ez al.
(1984), in which the X-rays diffracted from the sample powder are diffracted
again from an analyser crystal before reaching the detector. This use of a single
crystal as a receiving slit offers the highest angular resolution, less than 0.01° full
width at half maximum (FWHM), and discrimination against fluorescence
from the sample; the angular resolution is much better than the intrinsic widths
from samples usually encountered, so the widths of diffraction peaks are gen-
erally determined by the sample.

One improvement on the basic configuration of Fig. 4.2(b) is to couple several
detectors to the same axis, allowing the pattern to be recorded in several
(generally overlapping) segments simultaneously. Two such multiple analyser
systems are currently in use. On beamline BM16 at the European Synchrotron
Radiation Facility (ESRF), the detector bank consists of nine scintillation
counters, each behind a separate Ge(111) analyser crystal, with the nine crystals
mounted on a single rotation stage on the 20 arm (Hodeau et al. 1998). The
angular separation between each channel is close to 2°. Consequently, nine
diffraction patterns, offset from one another by ¢. 2°, are measured simulta-
neously. This beamline often works with short wavelength X-rays (0.3-1.0 A),
and thus a diffraction pattern is usually complete by 50° in 2. This is one of the
reasons it is desirable to minimize the separation between channels, so the
detectors are concentrated in the region of interest. Data are collected in a
continuous scanning mode, where the encoder on 26 and the counts accumu-
lated in the electronic scalers are read (without resetting) at up to 100 times/s,
depending on the rate of scanning. Following data collection, the counts from
the nine channels are rebinned, taking account of the exact separation between
the channels, the different detector efficiencies, and the decrease in the beam
current during the scan, to produce the equivalent normalized step scan, which
is more suitable for analysis with standard programs. The five detectors of the
powder diffractometer operated on beamline 4B at the Photon Factory are
separated by 25° (Toraya et al. 1996), and one must make a correction for
sample illumination, because the angles between the incident and diffracted
X-ray beams and the sample are not equal.

Three groups have described the construction of parallel-blade collima-
tors with angular acceptance of 0.03-0.07° for powder diffraction, schemati-
cally illustrated in Fig. 4.2(c) (Parrish ez al. 1987; Cernik ez al. 1990; Toraya
et al. 1995); collimators with comparable specifications are also available
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commercially. The theoretical transmission of such collimators is typically 50—
75 per cent. This is a better match to the angular width from typical samples,
and so the intensity available from such a setup is generally significantly larger
than from an analyser crystal configuration. An energy-sensitive detector, such
as cryogenically cooled intrinsic germanium gives a degree of discrimination
against X-ray fluorescence background, but such detectors generally have a
longer dead time than do the scintillation counters in typical use, and so are
limited to signal rates of less than ¢. 30 000 counts/s. A further advantage of the
parallel-blade configuration is that the wavelength can be changed rapidly,
because there is no analyser crystal to be aligned. One point to be considered
with parallel-blade collimators is that the effective sample size should be several
times the spacing between foils, so that slight movements of the diffracted beam,
caused by imperfect alignment or specimen opacity, are averaged over a number
of blades; the detector then views a proper statistical sample.

For more rapid data collection, it is advantageous to use a linear position-
sensitive detector (PSD) as illustrated in Fig. 4.2(d). Both flat and curved
detectors are available commercially; the angular resolution that can be
achieved depends on the detector resolution (~100 pm), the width of the sample
or incident beam, and the distance between sample and detector, and typically
ranges between 0.05° and 0.1°. Flat detectors are mounted on the 26 arm and
stepped at appropriate intervals during data collection; they have the advantage
that they can be moved further from the sample if higher resolution is needed,
and can be used with both narrow-diameter capillaries and flat-plate samples in
essentially symmetric reflection or transmission geometry. However, simulta-
neous data collection is only possible over a few degrees with flat detectors,
whereas curved detectors may cover as much as 120°. Because most linear PSDs
rely on delay-line readout and time-to-amplitude converters, their maximum
counting rates are limited to around 30000 counts/s over the entire angular
range. However, an order-of-magnitude increase is possible with the use of time-
to-digital converters (Smith 1991). Gas proportional detectors also have suffi-
ciently good energy resolution to allow discrimination against fluorescent
radiation or higher order harmonics. They may also be used in the ‘escape-peak’
mode with Kr gas (Smith 1991). With this technique, an angular resolution of
~0.03° can readily be obtained (Jephcoat et al. 1992).

Another version of a position sensitive detector for recording powder dif-
fraction patterns is the X-ray imaging plate, a form of electronic film originally
developed for diagnostic radiography (Miyahara et al. 1986; Ito and Amemiya
1991). This is a flexible sheet, typically 20 x 40 cm in size, which uses a meta-
stable phosphor to store the electronic energy when an X-ray is absorbed, and
releases it as fluorescence when a laser beam is scanned over its surface. Imaging
plates offer parallel data collection over a large area (a) without the limited count
rate typical of electronic PSDs, (b) with a very large dynamic range and con-
venient readout relative to conventional film, and (c) with a spatial resolution on
the order of 100 um. On the other hand, the recorded intensity decays somewhat
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between exposure and readout, and for best results, they must be handled in the
dark. One can either collect a powder pattern over the entire imaging plate at
one time, as shown in Fig. 4.2(e), or scan the imaging plate behind a fixed slit to
obtain time-resolution. The former technique, of integrating around the Debye—
Scherrer rings, is particularly useful with small or granular samples. Sophisti-
cated analysis techniques (Hammersley ez al. 1996) are required to reduce the
data to a one-dimensional pattern with the angular accuracy required for struc-
ture refinement or solution with imaging plates from powder samples, but there
have been some impressive successes at the Photon Factory (Honda et al. 1990;
Takata ez al. 1992, 1995) and the NSLS (Norby 1997). The angular resolution
available in an imaging plate camera is improved by increasing the sample to
plate distance, and a large instrument with a 56.3 cm diameter is in use at the
Australian National Beamline Facility at the Photon Factory (Sabine ez al.
1995).

Both the crystal analyser and the parallel-blade collimator share the advan-
tage that the instrument measures the angle of the diffracted X-ray, rather than
its position through a receiving slit. This ensures that the system is immune to
parallax errors due to sample displacement or the partial transparency of the
sample to X-rays, which are encountered with simple receiving slits (Fig. 4.2(a))
or PSDs (Fig. 4.2(d) or 4.2(e)). This is particularly important for indexing and
other aspects of structure solution, where peak locations must be determined
accurately.

4.3 Angular resolution, lineshape and choice of wavelength

The instrumental contribution to the width of a reflection at a synchrotron
source arises from a combination of many factors. The angular width of a
synchrotron X-ray beam near the critical energy is of the order of the electron
rest mass (0.511 MeV) divided by the electron energy (e.g. 0.20 mrad (0.01°) for
the 2.58 GeV NSLS machine), but the angular size of the sample may be much
smaller, perhaps 1 mm/15m=0.0038°. The X-ray source size from a storage
ring (e.g. 0.2mm FWHM at ESRF) is generally smaller than the samples in
typical use, so it makes a negligible contribution to the angular width. The
Darwin widths of the monochromating (and analysing) crystals are of the same
order of magnitude as these geometric effects (e.g. 0.0015° for Si(111) at
10keV). The intrinsic width is a minimum at the point where the diffraction
angle is the same as that of the monochromator, and it grows at larger dif-
fraction angles due to chromatic dispersion. The Darwin curves of the mono-
chromator (and analyser) have tails proportional to the inverse square of the
distance from the Bragg angle. This contributes to the largely Lorentzian
character of the lineshape, which is in contrast to the nearly Gaussian lineshape
obtained with typical neutron and laboratory X-ray diffractometers. The
sample-to-detector parallax for PSDs and imaging plates generally outweighs
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the source and monochromator contributions in such configurations, so a nearly
Gaussian or even more rectangular lineshape is obtained. In all, an analytical
prediction of the instrumental lineshape by convoluting the contribution of each
element is a difficult exercise.

Experimental measurement of the instrumental lineshapeis also problematical,
because there is no test sample free of finite size or strain broadening. Certain
materials such as Si and LaBg are frequently used as lineshape standards, but
they really only provide an upper limit to the diffractometer resolution. Indeed,
the peaks from any useful powder diffraction experiment must be much broader
than the intrinsic resolution of the instrument, because, in order for kinematic
scattering intensities to be observed, the grains must be much smaller than the
extinction length, and therefore produce diffraction peaks much broader than
the Darwin width. The widths of several experimentally measured peaks from
LaBg are plotted vs. energy in Fig. 4.3(a), and the variation of peak width vs.
scattering angle at one particular X-ray wavelength in Fig. 4.3(b).

A priori knowledge of the intrinsic instrumental lineshape is not especially
important for the task of structure solution, because the techniques of peak
fitting and intensity extraction or modelling generally fit the observed lineshape
with a sufficient number of adjustable parameters. Sample dependent con-
tributions are typically broken down into size and strain effects: the former
gives an angular width I'5y proportional to 1/cos(f) while the latter grows in
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Fig. 4.3. (a) Fitted FWHM of the (100) and (300) peaks from LaBs (National Institiute
of Standards and Technology Standard Reference Material 660) at various photon ener-
gies. Also shown are the Darwin widths (full width between y ==+1) of the Si(111) Bragg
reflections. (b) Fitted FWHM of several LaBg peaks at an X-ray wavelength of 0.70 A.
(Data taken at NSLS beamline X3B1 with Si(111) monochromator, Ge(111) analyser, in
flat-plate sample geometry.)
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proportion to diffraction order, so that I';4 increases as tan(f). The considerable
literature on sample broadening and the choice of appropriate lineshapes is
reviewed elsewhere, for example in Young (1993).

In any powder diffraction measurement, the low-angle peaks are asymme-
trically broadened to the low-angle side, due to the intersection of the curved
Debye—Scherrer cone with a flat receiving slit. This is equally true with analyser
crystal geometry, where the receiving slit is in momentum, rather than physical
space. The issue frequently appears to be more serious with synchrotron
data, because the peaks are intrinsically sharper. The analytical computation of
the correct broadening profile is straightforward (van Laar and Yelon 1984;
Eddy et al. 1986; Finger et al. 1994), but many Rietveld and Le Bail extraction
programs contain only an empirical approximation to the lineshape. The tra-
deoff between the lineshape and integrated intensity, as controlled by the
transverse slit size is illustrated in Fig. 4.4. Note that the high-angle sides of the
peaks are equally sharp, so that increased transverse slit width only broadens
the low-angle side of the peak. Therefore, accepting a larger solid angle (or
sample illuminated size) increases the peak signal with only a partial reduction
in resolution. Since one cannot completely remove the effect by narrowing the
beam to any finite value, it is important to view it as a parameter which is under
the experimentalist’s control, and which should be chosen to be appropriate for
the specific measurement. One should also note that the peak asymmetry effect
becomes more serious at decreasing Bragg angles, which occur for either
increasing unit-cell sizes or decreasing X-ray wavelengths. In our experience, the
semi-empirical asymmetry corrections used in most extraction and refinement
programs create serious systematic errors. While some Rietveld programs have
implemented the correct geometry for many years (David et al. 1992), at the
time of this writing, only two of the widely-used Rietveld programs contain the
correct geometry: GSAS (Larsen and Von Dreele 1985-94), and FullProf
(Rodriguez-Carvajal 1997). We hope that the increased use of advanced powder
techniques will motivate more people to incorporate the correct geometry into
their codes.

One important choice faced by the synchrotron powder diffractionist is that
of the wavelength at which the measurement should be performed. The source
intensity corrected for the transmission of the windows and optical elements
generally has a broad peak, but is useful over a wide range, for example,
between 5 and 25keV at the NSLS, and from 5 to 40keV at the ESRF
(E (keV) x )\(A): 12.398 keV A). The photon energy also affects the angular
width of the diffraction peaks. A given pair of peaks will have a greater angular
separation at long wavelength, but they also become broader, so that the
resolution in éd/d does not improve. For example, Fig. 4.5 compares the line-
shape observed from a quartz sample at various wavelengths, for analyser
crystal and collimator geometries. This shows that for a typical, somewhat
strain-broadened sample, the ability of an analyser-geometry diffractometer to
separate nearby lines does not depend strongly on the wavelength. The data
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Fig. 4.4. (a) Si(111) reflection at A=1.15 A, showing pronounced peak asymmetry. The
sample was ‘gently crushed’ Si powder in a capillary. The illuminated part of the sample
and the detector slit were both 8§ mm wide, and the sample to detector distance was 33 cm.
The smooth curve is a fit to a pseudo-Voigt lineshape corrected for axial divergence, as
described in the text; also shown is the difference curve. (b) Si(111) and (200) peaks with
equal source and detector slit widths of 8, 6, 4 and 2 mm, showing the evolution of the
asymmetric broadening.

plotted in Fig. 4.5 show that the constant angular width of the collimator
degrades the éd/d resolution as the energy is increased, whereas that of the
analyser remains approximately constant. At the same time, the intensity of
collimator relative to the analyser increases with increasing photon energy,
because the Darwin width (and therefore the integrated intensity) of the
analyser crystal decreases roughly in proportion to A.

The continuous spectrum from a synchrotron radiation source also allows the
exploitation of anomalous scattering in powder diffraction experiments. The
topic has been reviewed at length elsewhere (Materlik et al. 1994; Cox and
Wilkinson 1994); here we only touch on the fundamentals. The scattering factor
ffor an atom is a function of scattering angle 20 and photon wavelength A, but
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Fig. 4.5. Powder reflections of quartz. {212}, {203}, and {301} reflections at various
X-ray wavelengths for analyser and collimator geometries. Data taken at NSLS beamline
X3B1 with Si(111) monochromator and sample in 1.0mm diameter capillary. The
analyser crystal is Ge(111), and the collimator has 0.03° FWHM. All scans have the same

vertical units of X-ray counts/s/100mA of electron beam current. Note the different
vertical scale factors.

to a good approximation, it can be separated into the form
S0, 0) = fo(sin@/X) + 1'(\) + i (N). 4.1)

Here f; is the usual atomic scattering factor, dependent only on the magnitude
of the scattering vector; in the limit of low angles, it approaches the number of
electrons in the atom or ion. /7 and f” are the real and imaginary parts of the
anomalous scattering term, which arise from resonances between the X-ray and
the atomic energy levels, that is, at the K, L, and (for heavy atoms) M
absorption edges. Variations of f/” and f” with X-ray energy are illustrated for
several elements in Fig. 4.6(a). Tabulated values of /7 and /" are conveniently
available in the compilation by Sasaki (1988), or they can readily be computed
with the GSAS program (Larson and Von Dreele 1985-94). The positions of the
absorption edges are shown in Fig. 4.6(b), showing that resonant effects from
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Fig. 4.6. (a) Variation of the anomalous scattering factors f* and f” with photon energy
for Bi. (b) Energy of K, L and M edges versus atomic number.

many elements are available in the typical range for powder diffraction
(5—-40keV).

Anomalous scattering amplitudes can be used in two ways for the determi-
nation of structures from powder data: for phasing the reflections and for
distinguishing atoms at specific sites in cases where the atomic numbers are close
or there are mixed occupancies. The principles of using anomalous amplitudes
to phase a powder pattern were described by Prandl (1990, 1994). The concept
is demonstrated in an example of SrSO, given later in this chapter. In contrast
to the importance of multiple anomalous diffraction (MAD) phasing tech-
niques in macromolecular crystallography, recently reviewed, for example,
by Hendrickson and Ogata (1997), we are not aware of any work where the
determination of phases in a powder data set by anomalous diffraction was
essential to the solution. The latter application, of assigning cation occupan-
cies to disordered sites, is nicely illustrated by two studies of high-temperature
superconductors. Site distributions of specific samples were assigned as
(T10_47Pb0_53)(Sr1_SgCa0_42)(Ca1_94T10_06)Cu309 (TC: 1182K) (Marcos et al
1994) and (T11_72Cu0_28)Ba2(Ca1_86T10_14)Cu3010 (TC:127K) (Sinclair et al.
1994), based on data collected near several different absorption edges for
each sample.

4.4 Data preparation and indexing

In contrast to the usual procedure for processing laboratory X-ray powder data,
the raw intensity data obtained at a synchrotron source with a scintillation
detector or a linear PSD must first be normalized with respect to the incident
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beam intensity recorded by the monitor, and corrected for dead time losses. It is
important to note that the statistical errors in the observations (usually taken as
the square root of the raw counts) must also be properly scaled, since these will
be required for the weighting scheme used in the subsequent least-squares fitting
procedure. Data obtained with an imaging plate or a charge-coupled detector
do not need to be normalized in this way as long as multiple frames are exposed
on a constant-monitor-count basis, but they do require rather specialized
software for conversion into a form suitable for profile analysis (Hammersley
et al. 1996). At present, there seems to be no standard method for estimating the
observational errors for such data, and unit weights are often assigned.

A careful visual inspection of the pattern should first be made for features
such as (a) sets of weaker peaks that are much broader (or sharper) than the rest,
which may be the signature of an impurity phase, (b) peaks that are split, which
might be indicative of a slightly distorted unit cell, and (c) peaks with a sys-
tematically asymmetric shape, which might reflect slight inhomogeneities in
composition. If the unit cell is not known, the next requirement is a set of 20-30
peak positions suitable for input into an autoindexing program (see Chapter 7).
One of the many advantages of synchrotron radiation is that with a well-
calibrated diffractometer it is routinely possible to determine low-angle peak
positions with an absolute accuracy of 0.002-0.005°, and this greatly improves
the chances of a successful outcome. In many cases, it is quite straightforward to
extract the first 2030 peak positions from single peaks or small clumps of peaks
in the low-angle region of the pattern. However, ambiguities may arise when the
lineshapes of nearby peaks are found to differ significantly. This might be due to
the superposition of overlapping peaks but could also reflect the presence of
anisotropic microstrain or particle size effects. In such cases, the evolution of
the least-squares goodness-of-fit y* values and the difference plots provide
valuable information when fitting clumps of peaks; for example, whether or not
there are extra peaks lurking within the profile. Fig. 4.7 shows (from left to
right) a narrow region of low-angle data collected from a sample with an
unknown structure where clearly there are at least four peaks of varying width; a
very dubious fit to six peaks based on a pseuso-Voigt function with a single
FWHM T' and mixing parameter 7; a much-improved fit to three peaks with
individually-refined T'’s and 5’s; and a further significant improvement with the
addition of a fourth peak at the low-angle end, at which point the low value of
x 2 and the lack of structure in the difference plot indicate there is little prospect
of any further improvement.

4.5 Pattern decomposition and intensity extraction

Once the pattern has been indexed successfully, the next step is to attempt to
determine the possible space groups by looking for systematic absences. The
answer is often ambiguous, and one must therefore return to the question of
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possible space groups throughout the process of structure solution. Next, one
must extract as many integrated intensities as possible for structure solution.
This, for the general case where the peak width is a smooth function of d-
spacing alone, is the subject of Chapter 8.

Here, we address the non-ideal case. High-resolution measurements fre-
quently reveal deviations from ideal behaviour, and a number of different
approaches to deal with this problem have been put forward (Le Bail 1992).
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Fig. 4.8. See caption opposite.
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Fig. 4.8. (a) Peak widths (FWHM) versus diffraction angle for a sample of sodium para-
hydroxy benzoate. Plotted are both the widths of pseudo-Voigt fits to individual peaks
(circles) and widths to a Le Bail fit of the full profile, using the anisotropic broadening
formalism of Stephens (1999). (b) Portion of the Rietveld refinement of sodium para-
hydroxy benzoate incorporating anisotropic strain broadening (Dinnebier et al. 1999).
(¢) Structure of sodium para-hydroxy benzoate determined from powder data, from
Dinnebier et al. (1999). The contours indicate hydrogen atoms, found from Fourier
difference maps.

Many of the attempts at general formulations for this problem, such as
expanding the Caglioti parameters (Caglioti et al. 1958) as ellipsoids in the
three-dimensional reciprocal space, do not respect the symmetry of the reci-
procal lattice, and so cannot claim to correctly model the effect, even though
they may allow the diffractionist to draw a relatively smooth curve through the
data. A commonly observed case is anisotropic strain broadening, in which the
diffraction-peak width increases in proportion to the diffraction order, pro-
ducing a contribution to 8d/d which depends only on the direction in reciprocal
space. (Other cases, such as anisotropic size broadening (see Popa 1998) or
stacking faults are also observed in practice, but will not be discussed here.)
Several authors have developed models to deal with anisotropic strain broad-
ening based on moments of a multi-dimensional distribution of lattice metrics
within a powder sample (Thompson ez al. 1987; Rodriguez-Carvajal ez al. 1991;
Popa 1998; Stephens 1999). In its general form, this produces contributions to
strain broadening for certain allowed quartic combinations of Miller indices,
which results in a few (2—15) anisotropic strain parameters which can be refined
in a Le Bail or Rietveld fit. This has been incorporated into the Rietveld analysis
package GSAS (Larson and Von Dreele 1985-94). Fig. 4.8(a) shows the widths
of well-resolved peaks as a function of diffraction angle from a sample of
sodium para-hydroxybenzoate, and Fig. 4.8(b) shows a portion of a Rietveld
refinement of the structure of that material (Dinnebier et al. 1999). These illus-
trate that nearby diffraction peaks can differ by a factor of four in their widths,
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and that this phenomenological model of anisotropic strain broadening can
model the effect very well, and is invaluable for analysis of such data. Subse-
quently, Ungar and Tichy (1999) have shown that the same quartic combina-
tions of Miller indices arise from a general treatment of elastic strain caused by
lattice defects, at least in the cubic system. Therefore, this treatment of strain
broadening appears to be more fundamental than its phenomenological roots.

4.6 Systematic errors

As already emphasized, the likelihood of a successful outcome to an ab initio
structure problem depends very much on the accuracy and quality of the
intensity data, and we will now consider some common systematic errors and
how to correct for or avoid them. With care, it should be routinely possible
to collect synchrotron X-ray data with an overall error level no more than
1-2 per cent.

4.6.1 Particle statistics

If the effective sample volume is small and the average size of individual crys-
tallites is large, say >1 um, there may not be enough grains satisfying the dif-
fraction conditions for a particular reflection to ensure a proper statistical
powder average (see Chapter 6). Very narrow peak widths comparable to the
instrumental resolution provide an early warning signal of a potential problem,
which in extreme cases can manifest itself in the form of ragged or saw-tooth
peak shapes, but is more likely to escape detection altogether except as indicated
by a lack of success in the structure solution or poor results for the structure
refinement.

Examination by optical and scanning-electron microscopy should give a good
indication of the crystallite size, making allowance for the fact that the latter is
not necessarily the same as the size of the individual aggregates. Another useful
check is to measure the rocking-curves of a few strong reflections with the
detector fixed at the peak position; fluctuations of more than 20 per cent are an
indication of possible trouble ahead. Problems of this type can almost always be
eliminated by the use of capillary samples which are rotated at several Hz, but if
this option is not a viable one, the sample should at least be rocked through
several degrees during data collection. The volume of sample exposed to the
incident beam should be optimized by choosing a suitable wavelength with due
regard for absorption edges (typically in the range 0.4-1.3 A), selecting an
appropriate diameter for the capillary (a useful rule-of-thumb is R( p/pg) < 2.5,
where p/py is the packing fraction), and using as wide a horizontal aperture for
the beam as is practicable. If absorption considerations make it necessary to use
flat-plate samples, the latter should be spun (along the sample normal) if pos-
sible, or rocked through a range of a few degrees about the symmetric position.
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Imaging plates can also be used to overcome the problem of inadequate
particle statistics, because the intensity can be integrated over the whole Debye—
Scherrer ring, or at least a large segment of it. This technique is especially well-
suited for very small samples, and is widely used for structural studies at high
pressure in diamond-anvil cells, but generally yields data with more modest
resolution and peak-to-background discrimination. Another technique to obtain
a better powder average from a marginal sample is to use a Gandolfi spinner
with a small (say 1 mm x 1 mm) X-ray beam. A more drastic remedy is to fur-
ther grind the sample, but this should be done very carefully to avoid unwanted
consequences such as degradation of the peak shapes and widths, the formation
of disordered regions or extended defects, or even partial transformation into a
second phase.

4.6.2 Preferred orientation

The presence of significant preferred orientation effects is often a conse-
quence of using flat-plate geometry, which should normally be avoided if a
preliminary microscopic examination indicates a platy or acicular crystal habit.
Debye—Scherrer (capillary) geometry is superior in this respect, since preferred
orientation effects are vastly reduced. Nevertheless, as pointed out in Chapter 9,
in some cases it may be possible to take advantage of preferred orientation in
crystal structure solution, and these specialized techniques of data collection
should not be ruled out.

4.6.3 Absorption

When capillary geometry is used, a correction for absorption should be made if
the effective value of pR > 1. If uncorrected, absorption effects are likely to lead
to a negative overall thermal parameter (Hewat 1979). For larger values, a
correction can be made by parameterization of the transmission factors in the
International Tables (Maslen 1995); either Chebyschev polynomials (Toby
1997) or double Gaussian functions analogous to those used for scattering
factors are suitable for this purpose. In order to make this correction, the
packing density must be estimated, or better still, determined from direct
measurements of the weight and dimensions of the sample (the latter procedure
is strongly recommended not just for structure solution but for «all studies
involving capillary samples). If absorption corrections are made carefully,
negative thermal factors should not be obtained.

For ideal flat-plate samples, the absorption factor is p/2 independent of 26
and no correction is necessary. However, for very granular and highly-
absorbing materials there could be a significant reduction in intensity at low
scattering angles due to surface roughness as discussed by Suortti (1972), and
careful attention should be given to the preparation of flat-plate specimens of
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this type and the choice of wavelength, since there is no a priori way to correct
the raw data for this kind of microabsorption effect.

4.6.4 Extinction

Although extinction effects are seldom considered in the analysis of X-ray
powder data, they can be surprisingly large in highly-crystalline materials such
as diamond and silicon, especially at longer wavelengths. If an examination by
optical or electron microscopy reveals crystallites that are several microns in
size, the wavelength chosen for the experiment should be short enough to
eliminate possible extinction effects based on an order-of-magnitude estimate
from the expressions given by Sabine (1993), because there is no a priori method
to correct the data for effects of this type either.

4.7 Examples of structure solution

This book contains many examples of structure solutions that have utilized
synchrotron data. Rather than present a comprehensive review of recent results
obtained using the powerful and rapidly-evolving techniques in SDPD, we have
chosen problems that highlight the specific areas where synchrotron radiation
has made a key contribution. The earliest crystal structure determinations from
synchrotron powder diffraction data were of inorganic materials, such as
a-CrPOy4, MnPOy4 - H,0, ALY 4Og and 1,04. Since then, a full range of materials,
including inorganics, organics, organometallics, microporous compounds,
hydrates, fullerenes, etc., have yielded to the power of synchrotron radiation.
Table 4.1 summarizes the lattice parameters and number of atoms in the irre-
ducible cell for those mentioned in this chapter.

4.7.1 Pioneering studies

4.7.1.1 «a-CrPOy

The first example of a structure solved from synchrotron data (a-CrPOy,
Attfield et al. 1986, 1988) is discussed in Chapter 2 and the techniques employed
in this work set a pattern that was to be followed for several years.

4712 MnPO, H,O

The unit cell of MnPO, - H,O (Lightfoot et al. 1987) was determined by auto-
indexing from 20 reflections using the program of Visser (1969). A figure of
merit My of 196 indicated unambiguously that the correct unit cell had been
found. Such high figures of merit are not unusual with synchrotron studies,
because the peak positions are determined so accurately. Systematic absences
indicated the space groups Cc or C2/c and a Patterson map calculated from



Table4.1 Summary of examples discussed in this chapter. N4 refers to the number of independent atoms, and N to the number of refined
positional parameters

Compound Space group N4 Nc a(A) b(A) c(A) BC) V(A%
a-CrPO, Imma 8 13 10.4058(1) 12.8995(1) 6.29933(6) 845.6
MnPO, - H,0 C2fe 6 11 6.912(1) 7.470(1) 7.357(1) 112.3(1) 351.4
ALY,0, P2jc 15 45 7.3781(1) 10.4735(1) 11.1253(1) 108.540(1) 815.1
LO, P2jc 6 18 8.4879(2) 6.7010(2) 8.3407(2) 124713 390.0
BeH, ITham 4 7 9.082(4) 4.160(2) 7.707(3) 291.2
Sigma-2 14, famd 17 33 10.2387(1) 34.3829(1) 3604.4
SrSO4 Pnma 8.361 5.352 6.871 307.5
S-aminovaleric acid Pna2, 8 23 17.358(7) 4.523(2) 7.447(3) 584.7
CsFs:CsDs P2ija 12 36 9.4951(3) 7.4235(2) 7.5262(2) 95.630(2) 527.9
Norbornane P2i/m 4 11 5.9365(3) 9.6818(1) 5.7116(3) 116.356(5) 294.2
RS-camphor Cmem 11 33 6.8341(2) 11.6585(4) 11.5000(3) 916.3
S-camphor P2,2,2, 2 66 9.9276(1) 27.0636(3) 7.3815(2) 17832
CH,0, P-1 31 93 11.044 11.730 7.371 triclinic 9375
Beryllophosphate-H P321 25 63 12.5815(4) 12.4508 1706.9
LiZnPO, Pn2a 10 30 10.0207(2) 6.6731(2) 4.96543(8) 332.0
NasTi;8i50,; - 4H,0 P42,2 8 16 7.3673(1) 10.6998(1) 580.8
Uio-7 Phea 30 90 14.533(3) 15.334(6) 16.601(4) 3699.8
NH,VPI-9 Pdy/nem 9.8946 36.8715 3609.8
Rb-VPL9 P4,2,2 57 165 9.8837(1) 73.6505(6) 7194.7
NaCD, n» 11 29 6.7686(1) 18.6016(4) 6.5762(1) 828.0
RbCsHsI Puma 4 10 10.7990(2) 8.6923(2) 5.7061(2) 535.6
RbCH; IT Pbem 8 19 9.3396(1) 10.9666(1) 10.5490(1) 1080.5
B-haematin Pl 41 14 12.196(2) 14.684(2) 8.040(1) triclinic 1416
MeeCooHi, Puma 24 63 8.1000(2) 10.0643(2) 18.5664(4) 1513.5
Gay(HPO,); - 4H,0 P2, 29 87 8.0947(2) 10.0336(2) 7.6711(2) 111.392(2) 580.1
LasTisAl 505 Ce 60 178 22.5655(3) 10.9863(2) 9.7189(1) 98.569(2) 2382.5
(CH.),SBr, P2ja 5 15 11.4090(1) 7.3819(1) 7.4510(10 92.824(1) 626.8
(CH.),SBr 5 Cmca 7 17 21.9676(2) 11.1972(1) 11.0531(1) 2718.8
(CH.),SBr, P2ja 7 21 9.0381(1) 11.6589(1) 8.8859(1) 90.134(1) 936.3

Zn Insulin T;R;DC R3 1630 4893 81.278 73.0389 417860
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61 extracted intensities showed the location of a Mn atom. Subsequent differ-
ence Fourier maps revealed the remaining non-hydrogen atoms and hydrogen
was positioned after refinement of the structure on the basis of bond-length
and bond-strength calculations. In the final cycles, the hydrogen was allowed
to refine unrestrained, resulting in an O—H bond length of 1.00(4)/& and an
H-O-H angle of 100(1)°. The water content of one molecule per formula unit
differs from the previously assumed composition of this phase (1.5 H,0), but is
in agreement with TGA measurements. The octahedrally coordinated Mn(I1T)
ion has a marked Jahn-Teller distortion, in contrast to those observed in
various related M"SO, - H,O structures.

4.7.1.3 A12Y409 and 1204

The structures of Al YOy and 1,04 were solved from data collected with a
small linear PSD (Lehmann et al. 1987). Al,Y4Oq is isostructural with
AlLEu40, so a good estimate of the unit cell and space group was available as
prior information. From 573 reflections extracted by a Pawley refinement, 252
with |F| > 30 were used with the Direct methods program MULTAN77 to
reveal the positions of the four Y atoms. Least-squares refinement followed by
the calculation of a Fourier map revealed the locations of the nine O and two Al
atoms. In the case of 1,04, a probable unit cell and a space group were known
from Guinier measurements. Pawley refinement of the data gave 157 reflections
with |F | > 30 and the two I atoms were located from a Patterson map and by
the program MULTAN. Fourier maps based on the intensities extracted by
the Pawley refinement were very noisy, but after Rietveld refinement with just
the two I atoms, the four O atoms could be found easily. The structure was
confirmed by a refinement using neutron diffraction data.

4.7.1.4 Bel,

The structure of BeH, (illustrated in Fig. 4.9) was solved without any prior
knowledge (Smith et al. 1988), via autoindexing, space-group identification
from systematic absences, and then the calculation of the Patterson map. Two
Be atoms were identified, and the hydrogens were positioned using a trial-and-
error approach. The structure is composed of a network of corner-sharing BeH,
tetrahedra, rather than hydrogen-bridged chains as previously suggested. The
crystal-analyser geometry allowed a relatively large capillary to be used
(0.7 mm) without any loss of resolution, so more of the weakly scattering sample
could be placed in the beam.

4.7.1.5 Sigma-2

The first microporous structure determined from synchrotron data was that of
the 17-atom clathrasil Sigma-2 reported by McCusker (1988). With a series of
programs assembled for the task, peaks positions were identified and the pattern
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Fig. 4.9. View of the structure of BeH, showing the network of corner-sharing BeH,
tetrahedra (Smith ez al. 1988).

indexed using TREOR (Werner ez al. 1985). Systematic absences showed the
space group to be I4,md, 142d or 14,/amd, and the latter centrosymmetric space
group was assumed on the basis of intensity statistics. Two hundred and fifty-
eight reflections extracted by the Pawley method were used as input to the
single-crystal package XTAL, and all four Si atoms and five of the eight O
atoms were correctly located. The three remaining framework O atoms were
located in a difference Fourier map. Following Rietveld refinement of the
structure, the disordered organic template was located in the large cage. The
large and small cages that characterize the structure had not been encountered
previously in microporous materials.

4.7.1.6 SrS0Oy,

In a recent paper, Prandl (1994) proposed a method for ab initio structure
solution based on partial Patterson maps of anomalous scatterers derived from
powder data collected at three wavelengths, two close to an absorption edge and
one off-edge. This is analogous to the well-known multiple anomalous disper-
sion method widely used in protein crystallography, but differs insofar as the
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z=0.0 z=0.19 z=05

Fig. 4.10. Maximum-entropy reconstruction of partial Patterson maps for Sr atoms in
SrSO,4 obtained from anomalous scattering measurements, showing three sections at
different heights z along the c-axis (Burger et al. 1998).

Bijvoet pairs of reflections are coincident in a powder pattern. As a demon-
stration test of this proposed technique, data were collected from a reference
sample of SrSO, at wavelengths of 0.7702, 0.7820 and 1.1294 A, that is, about
13, 256 and 5132eV below the Sr K-edge (Burger ez al. 1998). Diamond dust
was added to the sample as an internal standard in order to scale the data on an
absolute basis in the subsequent derivation of the partial Patterson maps, which
are shown in Fig. 4.10. From the latter, the coordinates of the Sr atom were
readily determined as (0.16, 0.25, 0.19) and used to complete the structure
determination from the off-edge data set. A key feature of this work was the use
of maximum entropy methods to allow both overlapped and non-overlapped
peaks to be used in the reconstruction of Patterson maps, which were as free of
noise and truncation effects as possible. This technique might prove to be useful
in cases where conventional methods of structure solution have failed, but
clearly requires very accurate data and careful attention to experimental details.

4.7.2 Organic compounds

The crystal structures of organic compounds are often more difficult to solve
than inorganic structures. This is because there is usually no heavy atom present
for identification in a Patterson map, to provide phasing of the reflections,
and the scattering is usually weak, especially at the higher angles essential for
Direct methods. Furthermore, the crystallinity can be poorer, leading to peak
broadening and hence, more problems for indexing and extracting individual
intensities from overlapping reflections. On the other hand, the molecular
structure is usually well known and this can be put to good use, once a unit
cell has been determined, by considering the most efficient packing of the
molecules.

In studies of organic materials, it is often necessary to use either a deep flat-
plate sample or (preferably) a fat capillary, 1-2 mm in diameter. Thin flat-plate
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samples are not normally suitable as there is a very strong tendency for pre-
ferred orientation. Thin capillaries are quite difficult to fill, particularly when
the materials are hygroscopic, waxy, or electrostatically charged. Use of an
analyser crystal or Soller collimators is therefore essential, in order to avoid large
peak shifts caused by specimen transparency with the deep flat-plate sample, or
to avoid the broad peaks that would arise using a conventional receiving slit
with a fat capillary.

4.7.2.1 S-aminovaleric acid

S-aminovaleric acid (NH»(CH,),CO,H) was solved from data collected using a
cylindrical imaging-plate system (Honda et al. 1990). The data were recorded in
only 6 min, digitized, and reduced to the equivalent one-dimensional scan up to
65° in steps of 0.01° of 26. The fact that FWHM of 0.07° is not particularly
narrow when compared with standard synchrotron diffractometers operating
with Debye—Scherrer slits or an analyser crystal did not preclude structure
solution via a combination of Patterson maps, trial-and-error C-C chain
positioning and difference Fourier maps. It is particularly impressive that a
full structure can be obtained from data collected in such a short time.

4.7.2.2 C6H67C6F6 adduct

The solid adduct that forms between benzene and hexafluorobenzene at room
temperature undergoes three phase transitions, at 272, 247.5 and 199 K. The
ambient structure of phase I was solved from single-crystal data and comprises
cylindrically disordered columns of alternating benzene and hexafluorobenzene
molecules (Overell and Pawley 1982) held together by the quadrupole moments
of the two molecules, which are of opposite sign. The phase transitions are
associated with ordering of the columns, and large volume changes lead to the
fracture of single crystals. Powder diffraction patterns of phases 11, 111, and TV
were all indexed, with figures of merit greater than 200 (Willliams ez a/. 1992).

The monoclinic cell of the lowest temperature phase I'V was indexed despite
the presence of some weak peaks attributable to residual phase III arising from
the sluggish phase transition (even low levels of such impurities are generally
easily observed with synchrotron data). Intensities extracted by the Le Bail
method were input to the single-crystal program SIR88, which solved the com-
plete non-hydrogen structure comprising six C and three F atoms. The struc-
ture, shown in Fig. 4.11, was refined by the Rietveld method, but the presence of
the phase III impurity led to a somewhat high value for R,,. A deuterated
sample had also been measured by neutron diffraction, and refinement of the
X-ray structure using this pattern, which contains very little phase 111, gave a
satisfactory fit. The structure of phase 111 was subsequently deduced (Cockcroft
1995) in conjunction with the neutron data using the triclinic cell determined
from the synchrotron study.
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Fig. 4.11. View down the columns of alternating benzene and hexafluorobenzene
molecules in the lowest-temperature phase IV of the solid adduct. The molecules appear
to be intermediate between a staggered and an eclipsed configuration (Williams ez al.
1992).

4.7.2.3 Bicyclics

Bicyclic molecules frequently have orientationally disordered cubic or hex-
agonal structures under ambient conditions, but order at low temperature under
the influence of the weak steric and van der Waals interactions between mole-
cules. The low-temperature structures of two such systems, norbornane (bicyclo
[2.2.1] heptane—C;H ) (Fitch and Jobic 1993), and RS-camphor (C,oH;c0)
(Mora and Fitch 1997) were solved from synchrotron data. In each case, unit
cells were readily obtained by autoindexing, but attempts to solve the structures
by Direct methods were not successful.

The norbornane molecule has mm2 symmetry (C»,) and it is apparent that
there are two molecules per unit cell. Alignment of one of the molecule’s mirror
planes with the mirror plane of the most probable space group (P2;/m) was
followed by manual manipulation of the molecule’s position within the unit cell
in an effort to generate a calculated diffraction pattern resembling the observed
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one—a process of ‘manual global optimization’. Once the correct mole-
cular mirror plane had been selected, satisfactory agreement was eventually
obtained.

For RS-camphor, which is an equimolar solid solution of enantiomeric
molecules, the apparent space group is Cmcm, which has 16 general (x,y,z)
positions. The number of molecules per unit cell is four, implying a residual
disorder of the molecules, because they have symmetry /. The output from
SHELXS indicated fragments of molecules in the vicinity of the (0, 1/4, ~0.25)
position with symmetry m2m, but no clear picture was obtained. The correct
orientation of the molecule was obtained by a grid search of all possible mole-
cular orientations, centred at (0, 1/4, ~0.25) using the Rietveld method to assess
the models. In the refinements, the molecule was also given freedom to move
its centre away from (0, 1/4, ~0.25). From an initial search of orientational
space using coarse 10° steps, successively finer steps were used around the
orientation that gave a minimum in R,,, until the correct molecular orienta-
tion was clear. The structure has fourfold disorder in the position of the
molecule. Twofold disorder comes from the superposition of the two enantio-
meric forms of the molecule, with each possessing an additional twofold ori-
entational disorder.

More recently, the structure of the pure enantiomeric form of camphor in the
ordered, lowest-temperature phase was solved. A powder pattern was collected
from a spinning capillary cooled to 100K and the pattern indexed with an
orthorhombic cell. The volume of the unit cell (V' =1782 A3) indicates that there
are eight molecules per cell, hence two molecules in the asymmetric unit for the
most probable space group P2;2,2,. Attempts to solve the structure by using the
Direct methods package EXPO (Altomare et al. 1999) to locate the 22 non-
hydrogen atoms constituting the two independent molecules were not success-
ful. In contrast, global optimization using simulated annealing as implemented
in PowderSolve (Engel et al. 1999) returned the correct structure after a 10-day
run on a Silicon Graphics 02 computer, utilizing 1.1 x 10® cycles of simulated
annealing, performed in two distinct steps. In the first SA runs, both molecules
were allowed to rotate and translate independently, but no structure solution
was obtained. In the second round of annealing, the molecular locations were
fixed (in a sense emulating the approach used for the racemic solid solution) and
only their orientations allowed to vary. This second SA run improved the match
between the calculated and the observed diffraction pattern significantly and a
subsequent Rietveld refinement of this solution converged rapidly, indicating
this to be the correct structure for S-camphor.

4.7.2.4 Fluorescein diacetate

Fluorescein diacetate, C,4H 407, contains five connected aromatic and alicyclic
rings. A high-resolution diffraction pattern, collected from a spinning 1.5mm
capillary at room temperature, could be indexed with a triclinic cell with a
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volume indicative of two molecules in the cell. Structure solution using EXPO
(Altomare ez al. 1999) and SIRPOW (Altomare et al. 1995) failed to find a
sensible solution. Accordingly, the diffraction pattern was recollected at 100 K
and the high-angle region of the pattern scanned twice as often as the low-angle
region to improve the statistical quality of the high-angle data. Again, structure
solution attempts failed until the ‘fwhm’ parameter (which controls whether
adjacent reflections are considered to be overlapping or not) was increased
from its default value of 0.1 to 0.2. At that point, 14 atoms appeared in a
solution that had a combined figure of merit of 0.988. Subsequent cycles of
Fourier synthesis and refinement yielded the complete molecular structure, with
carbon and oxygen atoms correctly assigned and bond distances to within about
0.1 A of the values expected (Knudsen ez al. 1998). The packing of the fluor-
escein diacetate molecules in the crystal reveals a network of intermolecular
C-H---O hydrogen bonds, 10 per molecule, holding the structure together
(Fig. 4.12).

Fig. 4.12. View of the crystal structure of fluorescein diacetate as solved from powder
data using Direct methods. The two molecules shown are related by inversion (Knudsen
et al. 1998).
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4.7.3 Microporous materials

A number of impressive structures of microporous materials have been solved
using synchrotron radiation.

4.7.3.1 Beryllophosphate-H

Beryllophosphate-H, NaKBe,P,Og-3H,0, in which sodium and potassium
cations balance the negative charge of the microporous beryllophosphate fra-
mework (Harvey er al. 1992), was indexed on a hexagonal unit cell with no
systematic absences. Due to the multitude of possible space groups (16), no
attempt was made to solve the structure using Direct methods. Rather, the
similarity of the lattice parameters to those of MAPSO-46 was used to solve the
structure. The unit cell for MAPSO-46 was halved along ¢ and its c-glide
removed to give space group P321, and the calculated powder diffraction
pattern of that model matched the observed pattern. The framework was then
optimized by distance least-squares refinement. After Rietveld refinement with
restrained framework bond lengths and angles, the two Na and two K atoms
were located from difference Fourier maps, along with disordered water
molecules.

4.73.2 LiZnPO,

LiZnPO, is one of a number of novel materials that are formed between the
alkali metals, zinc, phosphate and water. It may be formed by dehydration of
the monohydrate, or synthesised directly (Harrison et a/l. 1995). After deduction
of the unit cell and space group (Pn2;a) from a combination of lab, synchrotron
and second-harmonic-generation measurements, attempts to transform the
framework of LiZnPO,-H,0 via a displacive non-bond-breaking procedure
proved unsuccessful. In contrast, a Direct methods solution using 342 | F|?
values as input to SHELX-86 revealed the positions of the Zn and P atoms.
Structure completion and refinement followed along conventional lines. The
structure deduced in this study confirms that dehydration of LiZnPO, - H,0O
leads to the breaking and remaking of Zn—O-P linkages, transforming
a framework that contains 4-, 6- and 8-rings into one that has only 6-rings, but
maintaining the alternation of ZnO, and PO, units. This is unusual behaviour,
as dehydration in microporous compounds normally proceeds with only small
distortions to the framework, though rearrangement of cations is frequently
encountered.

4.7.3.3 Na4Ti2Si8022‘4H20

Titanosilicates are often good catalysts, and are of particular importance in the
petrochemical industry. A novel compound, of composition NayTi,SigOy; -
4H,0, synthesised hydrothermally, was solved via autoindexing, Le Bail
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decomposition, and Direct methods nsing SHELX-86 (Roberts et al. 1996). The
solution, in the non-centrosymmetric space group P42,2, confirmed EXAFS
results that had suggested five-fold coordination of Ti by oxygen, in a square-
pyramidal coordination, with the apical oxygen having a shorter Ti—O distance.
The structure is layered, and is a double-sheet titanosilicate, in contrast to
fresnoite which has single sheets.

4.7.3.4  Aluminophosphate UiO-7

The high-resolution powder diffraction pattern of the aluminophosphate UiO-7
was indexed using TREORO90 on an orthorhombic cell, with systematic
absences suggesting the space groups Pbem or Pbe2; (Akporiaye er al. 1996). An
approach to solving the structure via model building, based on intuitive
knowledge from known-framework topologies, failed to produce structures
consistent with the data. However, an approach using simulated annealing
(Deem and Newsam 1989) based on structural knowledge about four-connected
networks combined with the symmetry restrictions imposed by the space group
was successful. Framework topologies are generated and then ranked in terms

Fig. 4.13. View of the structure of UiO-7 (Akporiaye et al. 1996).
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of a figure of merit, by applying a penalty factor based on deviations from
prescribed connectivities, bond lengths and angles, and site occupancies. The
match with the observed diffraction data is also included. Information required
in the procedure includes the number of tetrahedral atoms in the unit cell Ny
and in the asymmetric unit Ny. The former was obtained from the known
relationship of the framework density and the micropore volume obtained from
the water adsorption isotherm, and the latter was obtained from analysis of the
1P and 2’A1 MAS NMR spectra, yielding the most likely value as 6, but with 8
or 4 also as possibilities. A solution with a high figure of merit was found only
for Ny =4, in space group Pbem. However, to obtain P and Al ordering, the
unit cell must be doubled along « and the space group changed to Pbca.
The structure (Fig. 4.13) was completed by Rietveld refinement, and the loca-
tion of the organic template was determined from Fourier maps. The final
refinements included 30 atoms. This is the first published use of the simulated
annealing approach for the solution of a completely unknown framework
topology.

4.7.3.5 VPI9

Following optimization of the sample preparation to obtain a pure phase and
ammonium ion exchange, the unit cell of the zincosilicate VPI-9 was indexed
definitively from synchrotron data on a tetragonal unit cell with a =9.8946 A
and ¢=36.8715A in the space group P4,/ncm (McCusker et al. 1996). The
unit cell of the as-synthesised Rb-containing material has a doubled ¢ para-
meter, so structure solution was not attempted with those data. The structure
of the ammonium form was solved using a new approach (FOCUS) in which a
large number of electron density maps were generated from the extracted
integrated intensities, with randomly assigned phases. These were subjected to
a Fourier recycling procedure combined with a search for a three-dimensional
4-connected framework with appropriate bond distances and angles (see
Chapter 17). The framework identified has seven tetrahedral sites (T-sites), and
initial Rietveld refinements indicated that the correct structure had been found.
This represents one of the most complex zeolite-like structures solved from
powder data using an automated procedure.

The refinement was not pursued, as it was apparent that the exchange of
NH4* for Rb* was incomplete. Refinement was therefore attempted for the
as-synthesized Rb-analogue. Doubling the c-axis leads to the space group
P4,2,2 and requires 15 tetrahedral and 30 oxygen atoms. The distribution of Zn
atoms could not be obtained by refining the T-site occupancies. Therefore zinc
atoms were placed in the 3-rings, because this is where they are found in related
zincosilicates, and the population parameters of just these nine T-sites were
refined, starting from population parameters corresponding to 2/3 Si and 1/3
Zn. Refinement of this model led to localization of Zn into three pure sites in
the 3-rings. The channel contents were obtained from Fourier maps whose
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interpretation relied on chemical considerations. The final structure involves
59 atoms (45 of which describe the framework) and 170 structural parameters.

4.7.4 Organometallics
4.7.4.1 NaCDj;

The complementary use of synchrotron X-ray and neutron data to solve a
structure is illustrated by the case of deuterated methylsodium, NaCD; (Weiss
et al. 1990). Neutron data were collected and the pattern could be indexed as
body-centred orthorhombic (a=6.7686 A, b=18.6016 A, and ¢=6.5762 A).
Due to the similarity between a and c, it was not possible to resolve reflections
adequately to assess with confidence whether any systematic absences other
than those required for body centring were present. A synchrotron data set
showed clearly that no extra extinction conditions applied, indicating space
groups 1222, 121212y, Imm?2, Im2m, Im22, or Immm. The latter is centrosym-
metric and was excluded on the basis of intensity statistics. Using SHELX-86,
each space group was investigated, and a sensible non-hydrogen-atom structure
obtained in 7222. There are three crystallographically distinct Na atoms and
two C atoms in the structure. The six distinct D-atom positions were obtained
from the neutron diffraction data. Half the ions are arranged in (NaCDs),
tetramers with the D atoms staggered with respect to the three neighbouring
sodium ions, (similar to methyllithium). The remaining Na* ions are arranged
in zig-zag chains and the remaining CDj5 ions interconnect the tetramers via
Na—-C contacts. The structure, therefore, appears to be intermediate between
that of methyllithium and methylpotassium, in which discrete ions are present.

4.7.4.2 RbCsHs

The high resolution of a synchrotron radiation experiment was instrumental in
the solution of the structures of two polymorphic phases of RbCsHs present in a
single sample (Dinnebier ez al. 1997). Noting that the low-angle peaks fell into
two families (Fig. 4.14) the authors were able to index the two sets of peaks
separately. Thereafter, SIRPOW92 gave direct solutions of the two different
structures, the first in space group Pbem (a=9.3396 A, b=10.9666 A, c=
10.5490 A) and the second in Pama (a=10.7990 A, b=8.6923 A, ¢ =5.7061 A).
Both phases have polymeric zig-zag chains consisting of an array of bent Rb-Cp
sandwiches (Cp = cyclopentadiene, CsHs). The first has two independent chains
perpendicular to each other running along » and ¢, whereas the second has a
single type of chain, running along the a-axis.

4.7.4.3 B-haematin

Another recent application of powder diffraction to organometallic compounds
relates to malaria, a disease that kills more than a million people annually. The
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Fig. 4.14. Diffraction peak width versus angle 20 from a sample comprising two
polymorphs of RbCsHs. The smooth curves represent the fitted FWHM from the final
Rietveld refinements. Crosses represent groups of peaks that were not visually resolved in
the raw data (Dinnebier et al. 1997).

Fig. 4.15. Structure of S-haematin (malaria pigment) determined from powder X-ray
diffraction. Formation of dimers, by the inversion operation within each triclinic cell,
occurs through the Fel-041 bond, whereas dimers are linked into chains by hydrogen
bonds through 036 and O37. All other hydrogens are omitted for clarity. From Pagola
et al. (2000).
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haem groups released from the digestion of haemoglobin of malaria-infected
red blood cells are aggregated into an insoluble material called haemozoin or
malaria pigment. It is suspected that the antimalarial action of quinoline drugs
is associated with an inhibition of growth of haemozoin crystals in the digestive
vacuole of the malaria parasite Plasmodium. 3-haematin is a synthetic analogue
of malarial haemozoin, known to be chemically and crystallographically iden-
tical, but available in powder samples with higher crystallinity. The structure
was solved using the simulated annealing program PSSP. Previously, it had
been believed that haemozoin was a coordination polymer, but in fact, the
structure turned out to be a novel dimer of reciprocally esterified porphyrin
rings (Fig. 4.15).

4.7.5 Move difficult problems

With the exception of some of the structures of microporous materials described
above, most solutions are of structures containing less than 20 crystal-
lographically distinct atoms. To go further requires samples (and instru-
mentation) of the highest quality to yield data with narrow peaks throughout
the whole angular range: at low angles for indexing, and at higher angles for
accurate profile decomposition. Even then, structures are still usually solved in
several steps, though this is changing with the advent of global optimization
methods (see Chapters 15 and 16).

4.7.5.1 Mg6C02H]]

The diffraction pattern of MgsCo,H; was indexed from Guinier photographs,
taken with CoKa radiation (Cerny er al. 1992). A few weak peaks were
incompatible with the C-centred orthorhombic cell. To check for the presence of
a superstructure, synchrotron data were recorded, and these indicated a
quadrupling of the cell along a, yielding Pnma as the true space group. The
synchrotron data were collected at three wavelengths close to the Co K edge, so
that the changes in the values of /7 and f” could be used to provide better
contrast between Co and Mg atoms. The structure was solved in the C-centred
orthorhombic subcell, from Patterson and Fourier maps, using the contrast
provided by the resonant scattering of Co. There are two Co and eight Mg sites
in the full structure. Positions for hydrogen atoms were located from neutron
diffraction measurements on a deuterated specimen. Twenty possible sites for D
were identified by assuming minimum Co-D and Mg-D distances of 1.55 and
1.90 A, respectively. Refinement showed that 14 of these sites are occupied. The
final refinements used neutron and synchrotron data simultaneously. One Co
atom has four D ligands, and the other has four or five D ligands because one of
the five surrounding sites is half occupied. The structure is therefore partially
disordered, and has a three-to-one mixture of [CoD4]°~ and [CoDs]*™ complex
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anions, with the limiting ionic formula
4MgCo,Dy; = 5MgD, - 19Mg?t - 2[CoDs]* - 6[CoDy]" .

This description implies that the compound conforms to the 18-electron rule.

4.7.5.2 Gaz(HP03)3‘4H20

Another example where neutron diffraction was used to complete a structure
whose heavy-atom structure was solved from synchrotron data is Ga,(HPO3); -
4H,0 (Morris et al. 1992). A monoclinic unit cell was determined by TREOR
from laboratory powder diffraction data. Thermogravimetric analysis and the
observation of three distinct P sites from *'P MAS NMR, led to a postulated
composition of Ga,(HPO;);-3H,0. Systematic absences in the synchrotron
data were indicative of a two-fold screw axis, which, when combined with SHG
measurements, indicated P2;. Following a Le Bail extraction of the intensities,
the two Ga atoms were located by Direct methods using SHELX-86. After
structure completion using Fourier synthesis, Rietveld refinement and mole-
cular modelling, the final structure, comprising 29 atoms, was refined against
the neutron data.

4.7.5.3 L(lgTi5Al]5037

The laboratory X-ray pattern of La;TisAl;sO3; was indexed in space group
C2/c or Ce with a=22.54A, b=1097A, ¢=9.67A, and 3=98.49° (Morris
et al. 1994). The intensities were extracted from the high-resolution synchrotron
data using the Le Bail method and input to MULTANS4. The positions of the
three La atoms and two of the Ti atoms were found in Cc. No sensible solution
was found in C2/c. Difference Fourier maps revealed nine more metal atoms
(assigned to Al) and 27 oxygens. No more atoms could be found with the X-ray
data, so neutron data were collected. Following Rietveld refinement using the
partial model, ten O and seven more Al atoms were located by difference
Fourier synthesis. Following reassignment of one of the Al atoms designated
with the X-ray data as Ti, the remaining two Ti atoms were located in a Fourier
map. The structure has 60 atoms in the asymmetric unit. The final Rietveld
refinement was performed using two neutron diffraction patterns simulta-
neously. They were collected using different monochromator crystals (Cu (311)
and Si (531)) and wavelengths to adjust the optimum resolution to different
parts of the diffraction pattern. Restraints were applied to the tetrahedrally
coordinated Al atoms to improve the stability of the final refinement. This is one
of the most complex structures solved from powder diffraction data to date.

4.7.5.4 (CHg)zSBrz

(CHj3),SBr, was believed to exist in a stable and a metastable form, depending
on the method of preparation. Over a period of time, the metastable form
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transforms into the stable form as monitored by infrared and Raman spectro-
scopy. The stable and metastable compounds appear to correspond to a charge-
transfer form, (CH3),S — Br,, and an ionic form, (CH3),SBr*Br ™, respectively.
The crystal structure of the stable form was solved via Direct methods from
synchrotron data in space group P2,/a, with a unit-cell volume of 628 A> (Mora
et al. 1996). The structure confirmed the postulated charge-transfer nature of
the bonding to the bromine molecule giving a near-linear S—Br—Br angle.

In contrast, the high-quality diffraction data collected from the metastable
form (Fig 4.16) could not be indexed as a single phase despite concerted efforts.
The pattern was eventually indexed as a mixture of two phases using TREOR.
By running the program many times, systematically increasing the maximum
values of the unit-cell lengths and volume, and allowing a large number of
unindexed reflections, but imposing a stringent condition on the agreement
between observed and predicted peak positions, a monoclinic cell with a high
figure of merit (M= 122) was eventually obtained. Removing the peaks pre-
dicted by this cell led to a subset of reflections that could also be indexed with
My of 198 (Vaughan ef al. 1999).

One phase is monoclinic (unit-cell volume of 936 A3) and the other is
orthorhombic (unit-cell volume of 2719 AS). Both crystal structures were solved
using Direct methods. The orthorhombic phase corresponds to an ionic form,
but with additional bromine molecules in the structure whose presence was
not anticipated, giving a composition of (CH3),SBr, 5. The monoclinic phase
resembles the charge-transfer form, and the structure also contains additional
bromine atoms, giving (CH3),SBr,. Thus, the overall nature and composition

20000 1

15000 1

10000 | 1

Counts

5000

20/degrees

Fig. 4.16. Part of the Rietveld fit to the synchrotron X-ray diffraction pattern of the two
metastable forms of (CH3),SBr,. From Vaughan ef a/. (1999). The positions of the peaks
from the two phases illustrate how interwoven the two patterns are.
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are quite different from those expected from the sample preparation. The true
character of this sample was learned only when the structures were solved, and
it is clear that data of the highest quality was required for this success.

4.7.5.5 Human insulin—zinc complex

The structure of human insulin—zinc complex, is truly enormous relative to the
small-molecule crystallography usually practised with powder diffraction.
Motivated by the observation that powders of protein crystals often have very
sharp peaks, indicating crystallite size of ~1 um and negligible micro-strain,
Von Dreele (1999) has adapted the data analysis techniques used in protein
crystallography into the Rietveld package GSAS. In practice, the number of
stereochemical restraints exceeds the number of points in a diffraction profile.

In an investigation of the human insulin—zinc complex by powder diffraction,
it was discovered that grinding crystals of the well-known T3;R; Zn-insulin
complex in mother liquor produced a transformation to a new structure,
dubbed T5R;DC. The biologically active insulin unit consists of an 4B pair of
polypeptide chains. The T3R5 Zn-insulin complex is Thombohedral, in which the
hexagonal cell contains three (4B), dimers (810 non-H atoms per dimer,
excluding solvent). Upon grinding, the hexagonal axis approximately doubles,
although the molar cell volume decreases by 2.1 per cent. The structure solution
started with two independent rigid bodies of the previously known T3Rj
structure, displaced by half of the c-axis and rotated about it. Once this had
converged (with one of the groups rotating by 25° relative to its original position
during the refinement), a full stereochemical restraint and Rietveld refinement
completed the T3;R3;DC structure. The structure passes the protein stereo-
chemistry tests usually performed during crystallographic refinement. The final
refinement was of a pattern with 4800 data points up to 3.22 A resolution
(minimum d-spacing), with 2927 reflections, 7981 restraints, and 4893 structural
parameters (Von Dreele et al. 2000).

4.8 Conclusions

The above discussions and examples illustrate the advantages of using syn-
chrotron radiation to solve crystal structures from powder diffraction data.
Narrow peaks, accurate peak positions and excellent signal-to-background
ratios mean that these data are ideal for indexing, space group determination
and intensity extraction. This, coupled with the flexibility that a modern powder
diffractometer at a synchrotron source provides (e.g. sample environment,
multiple detectors) means that synchrotron data are ideal for structure solution
and refinement. Sadly, despite the excellent quality of synchrotron data and the
ingenuity of the scientists who collect it, not all structures can be solved. Every
laboratory has a supply of powder data sets which stubbornly refuse to yield to
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structure solution. It is the existence of these sets that will act as a continual
challenge to both instrumental and algorithmic developments.
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Neutron powder diffraction

Richard M. Ibberson and William I. F. David

5.1 Introduction

There is an old adage in powder diffraction that ‘neutron powder diffraction is
the technique of choice for structure refinement while X-rays should be used for
structure determination’. While this is an over-simplification, it is generally true
that the essentially constant nuclear scattering lengths for neutron powder
diffraction that are beneficial for refinement are also detrimental for structure
solution, because the effective number of visible atoms is higher for neutrons
than for X-rays. Accordingly, the vast majority of crystal structure determi-
nations are undertaken using X-ray diffraction data. There are, however, some
cases in which neutron diffraction data are to be preferred. In this chapter, we
review the technique and instrumentation of modern neutron powder diffrac-
tion with emphasis on its role in the determination of crystal structures.
Thermal neutrons are useful as a crystallographic probe because their
wavelength spectrum is of the same magnitude as interatomic distances. Neu-
trons scatter relatively weakly from matter, which means that large samples may
be used. This penetrating power leads to several advantages. Diffraction
experiments may be performed using complex sample environments such as
cryostats and pressure cells and the use of large samples reduces many of the
systematic errors commonly associated with X-ray powder diffraction.
Neutrons are scattered by the atomic nucleus but also interact, through
magnetic dipolar forces, with unpaired electrons, thus enabling the investigation
of magnetic structures. In the area of powder diffraction, neutrons are the
technique of choice for the structure determination of magnetic structures.
Since the nucleus is a point scatterer, the neutron cross-section is essentially
independent of neutron energy and, therefore, can generally be considered to be
independent of scattering angle or wave-vector k =sin /A = Q/4r. As a result,
strong reflections are commonly observed at both long and short d-spacings.
This is of particular value to structure refinement and can also be useful in
structure solution. Furthermore, the neutron scattering length varies as an
essentially irregular function of atomic number, whereas the comparable X-ray
scattering factor relates directly to the number of electrons. X-ray diffraction, in
consequence, is dominated by the presence of a heavy atom in a structure,
whereas for neutron diffraction, scattering from both light and heavy elements
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is of a similar magnitude. X-ray diffraction thus possesses an advantage for
structure solution since there are fewer “visible’ atoms. As a corollary, neutron
diffraction is capable of elucidating the complete structure with greater preci-
sion. Arguably, the main role of neutron powder diffraction in structure
determination is the validation and completion of structures determined using
X-rays. However, there are a number of circumstances, outlined below, in which
it can be advantageous to use neutron diffraction data as the principal tool for
structure solution.

5.2 Instrumentation

High-resolution neutron time-of-flight powder diffractometers operating at
pulsed sources such as HRPD at ISIS and high-resolution instruments on
constant wavelength sources such as D2B at the Institut Laue-Langevin (ILL)
Grenoble, permit the routine collection of data with a resolution, Ad/d, better
than 10~ In the case of time-of-flight instruments, this resolution is effectively
constant across the whole diffraction pattern. As a direct result of this inher-
ently high resolution, high-quality powder diffraction patterns that contain a
large number of well-resolved reflections and consequently a high-information
content can be recorded. These high-resolution diffraction data may be collected
for Bragg reflections at d-spacings of well below 1A because of the lack of
form-factor fall-off. This combination of high resolution and access to high
sin #/X is the principal reason that HRPD at ISIS in particular can provide an
alternative to single-crystal neutron diffraction for obtaining both accurate and
precise structural parameters in relatively simple crystal structures. Low-tem-
perature structure solution has also proven to be more straightforward, because
the data collection is technically much simpler with neutrons than with X-rays.

5.3 Autoindexing and space group assignment

In the early stages of structure solution, such as the determination of unit-cell
dimensions and the assignment of the correct space group, neutron powder
diffraction can, in some cases, offer significant benefits.

Unit-cell determination by autoindexing techniques (see Chapter 7) is, in
general, crucially dependent on the availability of the longest d-spacing infor-
mation from a single-phase powder pattern, regardless of the type of radiation
used. High-resolution data provides more precise d-spacing information lead-
ing to higher figures of merit and more reliable indexing solutions, but again,
these factors are largely independent of the radiation used. The ease of lattice-
parameter determination from first principles in the case of high-resolution
time-of-flight powder diffraction experiments, however, is impressive. The
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technique offers a particular advantage over other methods because in time-of-
flight measurements, the fixed instrument geometry leads to a zero-point error
which is not only small but becomes progressively less important at large
d-spacings, in contrast to the situation in constant-wavelength measurements.
The sensitivity of neutrons to light atoms can be critical to the correct
assignment of space group. For example, neutrons are particularly sensitive to
the tilting of octahedral TiOg groups in perovskites or to the orientation of
methyl groups in small organic molecules, both of which may subtly affect the
appropriate space group. This is well illustrated by the study of the structure
and phase transition in methylammonium tin chloride (Yamamuro et al. 1995).
This is one of a large family of compounds that have interesting structural and
dynamic properties associated with phase transitions. Within the * R3m’ phase of
all these compounds, a subtle phase transition occurs between 100 and 200 K.
All of the structural and spectroscopic properties change only slightly, but there
is a clear heat-capacity anomaly. Significantly, a single crystal X-ray study
(Kitahama et al. 1979) found the structure to be R3m at all temperatures,
although the hydrogen atom positions were not determined directly. In con-
trast, the neutron powder diffraction study carried out on HRPD confirmed
an order—disorder transition associated with the CD; and NDj groups of the
methylammonium ion at 156 K, and the true low-temperature space group was
shown to be R3. The high- and low-temperature structures of the CD;NH7
cations are shown in Fig. 5.1. The two alternative methyl rotations in the dis-
ordered phase are separated by about 1 A and are easily resolved using HRPD.

Fig. 5.1. Fourier maps of the CD;ND7 cations in the high-temperature disordered phase
of methylammonium tin chloride at 300 K and the low-temperature ordered phaseat 5 K.
The sections are shown perpendicular to ¢ at the level of the D atoms.
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5.4 Patterson methods

Patterson methods are most effective when there are a limited number of strong
scatterers that dominate the interatomic vector map (Chapter 12). This situa-
tion is rarely the case with neutron diffraction studies. However, there are cases
where the scattering characteristics of neutrons benefit this technique. For
example, the sensitivity in neutron diffraction data to the hydrogen atoms
decorating, for example, a benzene ring is useful in Patterson methods to
emphasize the planarity of the group to be located. For powder studies of organic
compounds, hydrogen is ideally replaced by deuterium, which has essentially
the same scattering length as carbon. The scattering dependence of neutrons
upon the nucleus is a combination of potential and resonance scattering and it is
the sum of these two factors that facilitates differentiation between isotopic
species of an element. Of more potential interest is the occurrence of negative
scattering factors for some elements. This phenomenon offers the unique con-
cept of Patterson techniques using negative-channel pattern decomposition.
This is discussed further in Chapter 12, where the particular case of the synthetic
mineral sphene, CaTiSiOs, is outlined.

5.5 Direct methods

The more uniform nature of scattering lengths and the ability to record data
out to high Q values make Direct methods a more attractive technique than
Patterson methods for structure solution using neutron powder diffraction
data. The practicability of ab initio determination from neutron powder data
was demonstrated by Cheetham ez al. as early as 1986 with the structure of ferric
arsenate, FeAsQy. The structure is monoclinic, space group P2;/n, with a unit-
cell volume of 296.55 A* and six atoms in the asymmetric unit, and its solution
by Direct methods was a tour de force. Given that structure solution of inor-
ganic compounds using X-rays is relatively straightforward, the literature for
ab initio solution from neutron powder data alone is, in this particular field,
restricted (see for example Balsys and Davis 1994, 1997, for studies of layered
alkali-transition metal oxides, and Harrison et al. (1995a) on the structure of
SI'6C05015).

In recent years, the majority of crystal structures that have been determined
solely from neutron powder data are molecular. These include ortho-xylene
(Ibberson et al. 20000), acetaldehyde (Ibberson et al. 2000¢), dimethyl sulphide
(Ibberson et al. 1997), methyl fluoride (Ibberson and Prager 1996), dimethyl
acetylene (Ibberson and Prager 1995), trichlorofluoromethane (Cockcroft and
Fitch 1994), rhenium heptafluoride (Vogt et al. 1994), trifluoroiodomethane
(Clarke et al. 1993), malonic acid (Delaplane et al. 1993), tribromofluoro-
methane (Fitch and Cockeroft 1992), trifluorobromomethane (Jouanneaux ez al.
1992) and cyanamide (Torrie ez al. 1992). This success is due to a number of
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factors. Many of these structure solutions and space group assignments depend
crucially on accurate hydrogen atom location. With neutron diffraction data,
this can be done with ease, particularly if the sample is deuterated. Moreover,
the low melting point of the majority of the examples cited above presents
additional technical problems for X-ray studies, either in terms of producing
and handling small single crystals, or producing small volumes of polycrystal-
line materials that exhibit a good powder average.

The complexity of structure solution by Direct methods tenable by neutron
powder diffraction remains modest even with recourse to the sophisticated
intensity extraction procedures detailed in Chapters 8-11. The monoclinic
structure of ortho-xylene, V=634 A®, with 18 atoms in the asymmetric unit
and the triclinic structure of dimethyl sulphide, ¥ =179 A*, with nine atoms in
the asymmetric unit represent some of the most complex examples tackled
to date.

5.6 X-n structure solution

The limits of structural complexity that can be solved and refined from powder
data have been substantially increased by harnessing the combined power
of X-ray and neutron diffraction. For example, in the study of the non-
aluminosilicate open framework material LiZnPO,, Harrison er al. (1995b)
used synchrotron X-ray data and Direct methods in order to establish the
framework structure. Having established the location of the framework species,
neutron data were then used to locate and refine locations for the lithium
and water molecule guests. A similar approach was used by Morris er al.
(1992) in order to elucidate the novel framework structure of monoclinic
Gay(HPO;); - 4H,0 (space group P2) with a total of 29 atoms in the asym-
metric unit and a unit-cell volume of 580 A3, Synchrotron X-ray data were
collected on beam line X7A at the NSLS, Brookhaven National Laboratory
and structure factors for 551 reflections were extracted from the powder pat-
tern. Structure solution using Direct methods produced an E-map with two
large peaks that were assigned as gallium atoms. Fourier recycling revealed a
further four atoms that were assigned to be two phosphorus and two oxygen
atoms. The atomic coordinates were then refined using the Rietveld method
and subsequent Fourier syntheses revealed the positions of a further phos-
phorous atom and 10 more oxygen atoms. Thus, a total of 17 atoms were
located in the asymmetric unit from the X-ray data. In order to complete the
structure solution and improve the overall quality of the structure refine-
ment, neutron diffraction data were recorded on diffractometer BT-1 at the
National Institute of Standards and Technology. Computer graphics techni-
ques were used to add the positions of phosphite deuteriums and two of the
water deuteriums to the model. Rietveld refinement against the neutron data
was then possible. An additional water oxygen and the remaining deuterium
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atoms were located from subsequent cycles of refinement and Fourier syn-
thesis. This complementary use of synchrotron X-ray and neutron powder
diffraction data illustrates well the potential for tackling considerably more
complex structures using what may be described as traditional crystallographic
methods.

Following their work on gallium phosphite, Morris et al. (1994) proceeded to
solve the structure of La;TisAl; 505, that has 60 atoms in the asymmetric unit,
again using a combination of synchrotron X-ray and neutron powder diffrac-
tion. The overall results are impressive; the structure is non-centrosymmetric
(space group Cc) with a unit-cell volume of 2383 A, X-ray data were used to
locate the bulk of the metal atoms and 27 of the oxygen atoms. The role then
played by the neutron data is of particular interest since, in addition to pro-
viding the location of the remaining oxygen atoms, it proved crucial in resolving
an incorrect assignment of aluminium for titanium in the analysis of the syn-
chrotron data. In the final analysis, a joint-Rietveld refinement of the structure
was carried out using two neutron data sets recorded at on BT-1 at NIST with
Cu(311) and Si(531) monochromators (A=1.539 and 1.589 A, respectively).
The higher take-off angle for the Si(531) crystal compared with the Cu(311)
monochromator yields greater resolution for the high-angle data that is espe-
cially important for precise structure refinement.

5.7 Future possibilities

As the desire to solve more complex structures from powder diffraction data
grows, the need to combine X-ray and neutron powder diffraction data will
increase. The remarkable success of Morris ef al. with LasTisAl;5037, described
in the previous section, will become more commonplace as X-ray powder dif-
fraction data alone prove to be inadequate. The recently developed global
optimization techniques (see Chapter 15) will also benefit from the availability
of neutron powder diffraction data. These techniques often utilize diffraction
data to molecular (dy,~1.5 to 2.5 A) rather than true atomic resolution
(dmin ~1 A), and this can leave a degree of ambiguity in the location of some of
the atoms within the crystal structure. The availability of neutron powder dif-
fraction data provides essentially an independent verification of the correctness
of the proposed crystal structure. If the proposed crystal structure agrees with
both X-ray and neutron powder diffraction data, one can be confident that the
structure is correct. Moreover, the neutron powder diffraction data can help in
the location of light atoms such as hydrogen and lithium and in the dis-
crimination between atoms such as nitrogen and oxygen in a molecular crystal
structure. A typical example is illustrated in Fig. 5.2 where two structures of
tetracycline hydrochloride are shown.

This material was used as part of an unofficial ‘SDPD Round-Robin chal-
lenge’ issued in 1998. Both structures have essentially equivalent goodness of fit
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Fig. 5.2. Two crystal structures for tetracycline hydrochloride obtained by simulated
annealing. The structures differ only in the orientation of the small planar fragment
[C—CO-NH,] to the right of the fused-ring system. It is difficult to distinguish between
them on the basis of X-ray powder diffraction data but with neutron data the difference
is substantial.

to the powder X-ray diffraction data. The only difference is the 180° rotation of
the NH; and the oxygen atom about the C—C bond on the right-hand ring. It is
difficult to distinguish between the two alternatives with X-ray diffraction alone
as the number of electrons is so similar for the NH, and O. With 1.52A
resolution data, it is also difficult to discriminate on the basis of bond lengths.
With neutron diffraction data there is no such problem. The hydrogen atoms
are immediately visible and the nitrogen scattering length is some 60 per cent
larger than that of oxygen.

The uses of neutron powder diffraction data in global optimization methods
are not, however, restricted to the ‘end-game’ of structure solution. For
example, the orthorhombic structure of mera-xylene, with 18 atoms in the
asymmetric unit and a cell volume of 1280 A3, was solved routinely using global
optimization methods applied to neutron data (Ibberson ez al. 2000a). Other
more recent examples of this technique include solution of the phase III
structure of methane (Neumann ez al. 2003) and the phase II structure of
dimethyl sulfate (Ibberson ez al. 2006).

The negative scattering lengths of hydrogen can actively be used to discri-
minate between the outer-molecular envelope (corresponding to the hydrogen
atom positions) and the molecular backbone. A two-channel, positive—negative
maximum entropy (ME) map phased from a small number of reflections pro-
vides superior contrast to a map containing only positive scattering density.
This is exemplified by the example of sulphamide. Data were collected on
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Table 5.1 The phased-structure factors used in the construc-
tion of the kkO projection of sulphamide. The phases of the
weak reflections are not known. However the bimodal distribu-
tion can be well approximated by a single Gaussian distribution
centred at zero

h k I F o(F)
6 12 0 0.0 0.1
4 14 0 0.0 0.1
4 8 0 0.0 0.1
10 4 0 114 0.4
6 6 0 13.9 0.1
2 8 0 14.7 0.1

HRPD at ISIS. The crystal structure is orthorhombic with space group Fdd2
and lattice constants a =9.6479, b=16.7624 and ¢ =4.4939 A. With the active
use of only six centric 40 reflections, it is possible to locate the molecule within
the ab plane. Three strong and three weak hk0 reflections were used in the
construction of the scattering density. These are listed in Table 5.1.

In contrast with traditional Fourier methods, the weak reflections have a
valuable role to play. ME maps are consistent with the observed structure factor
data and are not precluded from containing non-zero Fourier components
associated with unobserved data. The addition of weak reflection information
forces the ME map to have only very small Fourier components associated with
these reflections. Remarkably, in the positive channel of the Fourier projection
shown in Fig. 5.3(a), the nitrogen atoms are revealed very clearly along with the
oxygen atoms. The sulphur atom is invisible. This is to be expected since
nitrogen is the relatively ‘heavy atom’ for neutrons, while sulphur is a weak
scatterer. The relative scattering lengths of the main atoms in organic molecules
are listed in Table 5.2 with their “X-ray equivalent’ scattering—oxygen is taken
to be the reference standard. The negative ME map is less clear cut. Although
the hydrogen atom positions are clearly indicated, the strongest feature is
related to the positive scattering density associated with the nitrogen. This is
perhaps not unexpected since so few Fourier components are being used.

The potential presence of both positive and negative scattering density in a
neutron diffraction Fourier map is commonly considered to be disadvanta-
geous, because the positivity premise (and, consequently, triplet relationships)
of Direct methods is violated. However, this example of sulphamide illustrates
that there is extra information when negative scattering occurs, since two maps
rather than one can be constructed. The contrasting visibility of different atoms
for neutrons and X-rays can also be harnessed to good advantage. Although
neutron powder diffraction data will always be used less frequently than X-ray
data for structure solution, the complementary information available from
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Fig. 5.3. (a) Positive and (b) negative channel ME projections for sulphamide. Using
only three phased strong reflections and three unphased weak reflections, all the atoms in
the projected structure of sulphamide are clearly determined. The latter map shows only
hydrogen positions while nitrogen and oxygen positions (sulphur scatters weakly) are
clearly located in the positive channel. The figures are arranged as follows: projection
only (left), projection plus overlaid structure (centre), structure only (right).

Table 5.2 Common elements in organic materials and their
neutron scattering lengths. The element associated with the effective
equivalent X-ray scattering factor is shown in the third column (the
scattering factors are scaled relative to oxygen)

Atom b (10~ ¥ m) X-ray ‘equivalent’
C 6.65 F

N 9.40 Al

O 5.80 O

S 2.87 Be

H —3.74 B

D 6.67 F
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neutron diffraction data will become increasingly important as more complex
crystal structures are tackled. In particular, neutron powder diffraction may
prove to be an invaluable additional technique for crystal structures that have
more than one molecule within the asymmetric unit, where molecular-envelope
information can provide a significant constraint upon the complex search space
that needs to be explored by global optimization methods.

References

Balsys, R. J. and Davis, R. L. (1994). Solid State Ionics, 69, 69-74

Balsys, R. J. and Davis, R. L. (1997). Solid State Ionics, 93, 279-82.

Cheetham, A. K., David, W. . F., Eddy, M. M., Jakeman, R. J. B., Johnson, M. W. and
Toradi, C. C. (1986). Nature, 320, 46-8.

Clarke, S. J., Cockceroft, J. K and Fitch, A. N. (1993). Z. Kristallogr., 206, 87-95.

Cockeroft, J. K. and Fitch, A. N. (1994). Z. Kristallogr., 209, 488-90.

Delaplane, R. G., David, W. L. F., Ibberson, R. M. and Wilson, C. C. (1993). Chem.
Phys. Lett., 201, 75-8.

Fitch, A. N. and Cockcroft, J. K. (1992). Z. Kristallogr., 202, 243-50.

Harrison, W. T. A., Hegwood, S. L. and Jacobson, A. J. (19954). J. Chem. Soc. Chem.
Commun., 1953—4.

Harrison, W. T. A., Gier, T. E., Nicol, J. M. and Stucky, G. D. (1995b). J. Solid State
Chem., 114, 249-57.

Ibberson, R. M. and Prager, M. (1995). Acta Crystallogr. B, 51, 71-6.

Ibberson, R. M. and Prager, M. (1996). Acta Crystallogr. B, 52, 892-5.

Ibberson, R. M., McDonald, P. J. and Pinter-Krainer, M. J. (1997). J. Mol. Struct., 415,
259-66.

Ibberson, R. M., David, W. 1. F., Parsons, S., Prager, M. and Shankland, K. (2000a).
J. Mol. Struct., 524, 121-8.

Ibberson, R. M., Morrison, C. and Prager, M. J. (2000b). J. Chem. Soc. Chem. Commun.,
539-40.

Ibberson, R. M., Yamamuro, O. and Matsuo, T. (2000¢). J. Mol. Struct., 520, 265-72.

Ibberson, R. M., Telling, M. F. T. and Parsons, S. (2006). Acta Crystallogr. B., 62, 280—6.

Jouanneaux, A., Fitch, A. N. and Cockcroft, J. K. (1992). Molecular Physics, 71, 45-50.

Kitahama, K., Kiriyama, H. and Baba, Y. (1979). Bull. Chem. Soc. Jpn, 52, 324-8.

Morris, R. E., Harrison, W. T. A., Nicol, J. M., Wilkinson, A. P. and Cheetham, A. K.
(1992). Nature, 359, 519-22.

Morris, R. E., Owen, J. J., Stalick, J. K. and Cheetham, A. K. (1994). J. Solid State
Chem., 111, 52-17.

Neumann, M. A., Press, W., Noldeke, C., Asmussen, B., Prager, M. and Ibberson, R. M.
(2003). J. Chem. Phys., 119, 1586-9.

Torrie, B. H., Von Dreele, R. and Larson, A. C. (1992). Molecular Physics, 76, 405-10.

Vogt, T., Fitch, A. N. and Cockeroft, J. K. (1994). Science, 263, 1265-7.

Yamamuro, O., Matsuo, T., Suga, H., David, W. 1. F., Ibberson, R. M. and Leadbetter,
A. (1995). Physica B, 213-214, 414-16.



6

Sample preparation, instrument selection and
data collection

Roderick J. Hill and Ian C. Madsen

6.1 Introduction

The importance of careful sample preparation and data collection in powder
diffraction studies has been described on several previous occasions (Hill and
Madsen 1987; Bish and Post 1989; Hill 1993; and references therein). Never-
theless, the process of collecting diffraction data is often entered into without
adequate forethought about the purpose of the data collection or its impact
on the outcomes of the experiment. Laboratory instruments normally have a
‘favoured’ configuration which is used for a wide range of experiments. While
this is convenient, it is often not suitable for all of the data collections that
take place in the laboratory. Even at large installations, folklore and/or time
pressures, rather than a considered approach, often dictate data collection
protocol.

In designing a powder diffraction experiment, it should be remembered that
there are a multitude of possible reasons for collecting diffraction data on a
sample. These include the qualitative and quantitative phase analysis of a multi-
phase mixture, the determination of unit-cell dimensions through pattern
indexing, the solution of an unknown crystal structure, or the refinement of a
partially known structure using the Rietveld method. In the context of this
book, structure determination lies in the foreground, so its requirements will
be emphasized. Considerations specific to Rietveld refinement have been
discussed previously (Hill 1993; McCusker ef al. 1999).

For the solution and/or refinement of a crystal structure, the peak intensities
must accurately represent the inherent scattering from the crystal lattice, free
from aberrations that might be introduced by the sample or the instrument. In
other words, the diffraction pattern must be an unbiased representation of the
intensity-weighted reciprocal lattice. If, however, unit-cell determination and
indexing (see Chapter 7) is the primary purpose of the experiment, the peak
intensities are of less concern than the peak positions. In this case, the
positions of the peaks must accurately reflect the d-spacing of the reflections
involved and their widths and shapes need to be such that they can be readily
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modelled with existing peak profile functions. Thus, the experiment might be
constructed differently, depending on the information required.

6.2 Issues and early decisions—experimental design

There are three central issues to be addressed before data collection begins. The
first relates to the sample itself. What is the form of the sample? Is it a powder or
can it be processed into a powder? How much sample is there? Is there enough
for neutron analysis (if required) or only enough for a small capillary or a thin-
film sample mount? Will the data be free of sample-related aberrations, such as
preferred orientation or extinction, due to size and shape effects?

The second main issue involves the selection of the most appropriate dif-
fraction instrument for the experiment. What radiation should be used? Are
X-rays the most appropriate radiation? Is access to a synchrotron facility
required for additional intensity or resolution (see Chapter 4)? If neutron data
are better suited, perhaps because of sample absorption or the need to determine
light atom positions (see Chapter 5), should a high-or low-resolution instrument
be used? Having decided on the radiation, it is necessary to consider the
instrument geometry. Most laboratory diffractometers are set up in reflection
mode, but an increasing number of laboratories are equipped with capillary
transmission mode setups. At neutron and synchrotron facilities, capillary
mode is almost universal.

The third and final issue relates to the desirable characteristics of the data.
What d-spacing range is required? What should the step width between the data
points be? How intense should the pattern be? That is, what exposure time is
required, or how long should the counter dwell at each point? Should a fixed or
variable counting time strategy be employed?

All of the factors mentioned above are within the control of the experi-
mentalist and all have the potential to affect the outcome of the data analysis.
Since the choice of experimental conditions will also be partly governed by
the total time available on the instrument of choice, this may require that the
optimum data collection conditions be compromised, or, in some cases, the
speed of data collection may be governed by the sample itself. If, for example,
the sample is unstable, or if it is used in a dynamic study, there may be a need to
collect the data more rapidly than normal. In this case, it may be necessary to
choose between a conventional detector system and one that collects the
whole pattern simultaneously using a position sensitive detector, an image
plate or a film.

In this chapter, the following issues are addressed: (a) the need for multiple
datasets, (b) the effect of sample characteristics, (c) the diffraction instrument
and (d) data collection strategies and the manner in which they influence the
diffraction pattern and the quality of data analysis. The discussion relates
equally to pattern indexing, structure solution, Rietveld refinement and phase
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analysis, although it is clear that the emphasis will vary in each of these
applications.

6.3 Multiple datasets

During the course of a full structure determination and refinement from powder
data it can be advantageous to collect several diffraction patterns under con-
ditions optimized for each of the analytical steps involved. This addresses and
corrects the common practice in which all operations are performed using a
single dataset. The latter leads to compromises being made, and has the
potential to cause errors in the final result. The set of recommended patterns
includes:

1. A reconnaissance pattern for the identification of phases by search—match
methods, for the preliminary investigation of the suitability of the sample
(e.g. purity), and to decide on future data collection conditions (d-spacing
range, step width and pattern intensity). Such a pattern can be collected
quite rapidly over a limited d-spacing range.

2. An indexing pattern to be used in the determination of the unit-cell
dimensions via pattern indexing. Ideally, in a laboratory X-ray experiment,
this pattern should be collected with an internal standard (for accurate 20
calibration) and a thin-film sample mount (to minimize sample-related
aberrations in a Bragg—Brentano setup) and would be limited to the 20-40
largest d-spacings.

3. The pattern decomposition pattern to be used for the extraction of integrated
intensities for subsequent structure solution. This pattern needs to be
collected over a wide d-spacing range with the highest possible resolution to
allow a maximum separation of adjacent peaks and with high intensities to
ensure the good counting statistics required for the decomposition of both
strong and weak reflections. Step size should be selected according to the
characteristics of the pattern (see Section 6.6.1).

4. The structure refinement pattern to be used for the Rietveld refinement of the
structure. This pattern has the same requirements as the previous one, but
should also include the smallest practical d-spacings. These low d-spacing
reflections are essential for a precise refinement of the structure parameters.

5. A second refinement pattern might be collected with a different wavelength
or radiation source to resolve problems in the structure refinement. For
example, if most of the work has been carried out using laboratory X-ray
data, a neutron dataset may be required to obtain accurate refinement of
light atoms, selected atom site occupation factors or thermal parameters.

Specific discussion of the need for, and requirements of each of these data sets
will be described at appropriate points in the discussion below.
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6.4 The sample

One of the most critical steps in diffraction analysis is to minimize systematic
sample-related effects and instrumental aberrations before data collection
begins. Very often the models for the correction of aberrations are only
approximations, which do not adequately correct for large errors in the data.
A computer program should never be used to make gross corrections for poor
sample preparation or inappropriate instrument configuration. Rather than
persisting with poor data, it is better to (a) re-prepare or remake the sample,
(b) find a more suitable sample, or (c) change to another instrumental config-
uration and/or wavelength.

6.4.1 Sources of sample-related errors

A summary of some of the typical sample-related problems and their possible
solutions can be found in Table 6.1. It should be noted that sometimes a sample
‘problem’ can actually provide useful information. For example, while preferred
orientation can often cause difficulties in the measurement of unbiased powder
intensities, the same effect can be used to obtain more information in an
intensity extraction process (see Chapter 9).

6.4.2  Number of crystallites contributing to the diffraction process

For structure refinement, it is generally accepted that the peak intensities need
to be measured to a precision of about +2 per cent because this is a reasonable
target for the agreement between observed and calculated intensities in the
structure refinement step. As indicated in Table 6.2, the ability to achieve this
precision is strongly governed by the size of the crystallites in the sample.
Reproducible diffraction intensities require a small crystallite size in order to
ensure that all parts of the Debye—Scherrer cone are equally populated by the
diffracted beams.

Table 6.3 shows that for a typical sample volume of 20 mm? there can be as
few as 12 crystallites diffracting if their size is about 40 um, but this figure
increases by more than three orders of magnitude if the crystallite size is reduced
to 1pm. It should be noted, of course, that single-crystal diffraction patterns
can now be collected on crystallites with volumes of less than 1000 um® at
synchrotron microcrystal facilities, so if there are large crystallites in the sample,
this alternative route to structure solution should be considered before the
sample is ground.

Elton and Salt (1996) have used both theoretical and experimental methods
to estimate the number of crystallites diffracting (Ngir) in a sample. They have
shown that variations in line intensity between replicate samples arise largely
from the statistical variation in the number of particles contributing to the
diffraction process and that small changes to the instrumental and/or sample
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Table 6.1 A list of some sample related problems, their cause and possible solutions

Effect Cause Possible solution
Inaccurate peak Not enough crystallites Reduce the crystallite size
intensity measurement contributing to the Spin the sample
diffraction process Increase beam divergence
Poor reproducibility of Sample not representative  Adopt better sub-sampling
peak intensities of the ‘bulk’—not strategies
enough crystallites Reduce the crystallite size
in the sample
Enhanced or reduced Preferred orientation Reduce the crystallite size
peak intensities Change sample
along particular presentation (side-mount
crystallographic rather than back-press;
directions use capillary geometry)

Include randomizing
sample movements
Introduce a diluent
Average the intensity
around the Debye—Scherrer

‘rings’

Low-angle intensities Incident beam ‘footprint’ Match footprint of beam
observed with lower too large; surface and sample by correct
than expected roughness; extinction selection of slits
intensity Smooth the sample surface

Reduce crystallite size

Introduce crystal strain

Use a shorter wavelength
of radiation

High background Sample fluorescence; Change wavelength
incoherent scattering; Deuterate the sample
air scatter Evacuate the beam path

Use a diffracted beam
monochromator

configuration can significantly improve the sample statistics. An estimate of the
fractional particle statistics error, opg, is given by:

v Naier
Naier

ops — (61)

Estimated values of Nggr are dependent on the number of particles being
irradiated and the solid angular range over which the particle can diffract.



THE SAMPLE 103

Table 6.2 Typical intensity reproducibility for quartz (113) reflection using Cu Kea
(from Klug and Alexander 1974)

Crystallite size range 15-20 pm 5-50 pm 5-15pum <5pum
Intensity reproducibility 18.2% 10.1% 2.1% 1.2%

Table 6.3 Relationship between crystallite diameter and number of crystallites diffrac-
ting (from Smith 1992)

Crystallite diameter 40 pm 10 um 1pm
Crystallites/20 mm® 597 % 10° 3.82 % 107 3.82 % 10"
No. crystallites diffracting 12 760 38000

6.4.3 Increasing the number of crystallites examined

For a given sample, several methods can be used to increase the number of
crystallites contributing to the diffraction pattern.

1. Use an instrument with wider beam divergence (ops reduced by a factor of
about two). However, it should be noted that this will reduce the overall
instrumental resolution and lead to greater peak overlap, so might not be
appropriate if structure determination is planned.

2. Rotate the sample about the normal to the sample surface for a flat-plate
sample or about the sample axis for a capillary sample (ops reduced by a
factor of about five or six).

3. Oscillate the sample about the theta axis (flat plate only). Note that this
motion defeats the exact §/20 relationship between sample and receiving slit
and may lead to aberrations in the peak intensities, positions and profile
shapes when using a Bragg—Brentano setup with a non-parallel X-ray beam.

4. Repack the sample, recollect and reanalyse the diffraction data. Averaging
the results from each analysis will produce more meaningful parameter
values and will allow better determinations of their estimated standard
deviations (e.s.d.s).

5. Average the data sets collected in (4). This will increase the precision of the
final estimates.

For heavily absorbing materials, the beam will not penetrate as far into the
sample and the overall volume of diffracting material will therefore be smaller.
Equation (6.2) shows the relationship between linear absorption coefficient ()
and penetration depth (7):

3.45
{ =——sind (6.2)
n
For quartz (Si0,) with a Cu Ka source and a diffraction angle of 30° 26,
p=95cm ! and 7 is approximately=95um. For hematite (Fe,O5), with

p=1146cm !, the penetration depth is only 7.8 um.
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The most effective method of increasing the number of crystallites examined
is simply to reduce the average crystallite size by carefully grinding the sample.
However, while too little grinding results in an inadequate reduction of
size, over-grinding often changes the sample. This can result in (a) generation
of amorphous layers at the surface, (b) peak-broadening related to crystallite
size and strain effects, and (c) solid-state phase transitions. These problems
are significantly reduced by grinding in a liquid (e.g. alcohol or acetone),
which tends to reduce local heating of the sample in the grinding vessel.

It should be noted that all methods of grinding will cause some contamination
from the grinding vessel unless the vessel and sample have the same phase
composition. The aim should always be to minimize the contamination, or at
least to ensure that the contaminating material does not significantly interfere
with the diffraction pattern. Materials commonly used in grinding vessels
include agate (Si0,) , tungsten carbide (WC), tool steel (Fe), corundum (Al,O3)

Table 6.4 A comparison of different methods of crystallite size reduction with their
potential benefits and shortcomings

Technique Benefits Drawbacks
Hand mortar and Cheap and readily available Tedious to use, especially
pestle if small particle sizes
are required
Automatic mortar Can produce small sizes
and pestle (~3 um) in reasonable times

(several minutes)
Can be used for ‘dry’ or
‘wet’ grinding

McCrone Capable of routinely The use of 48 grinding
micronising mill producing sizes of ~10 um elements can make it
with a small spread of tedious to clean

sizes
Use of grinding fluid
minimizes structural damage

Rotary Effective for initial grinding Can cause severe
(Sieb-Technik) of very large grains structural damage
mills (>a fewmm)

Not suitable for fine
grinding; broad range of
particle sizes produced

Ball mills Rapid reduction of particle Can be tedious to clean
size Cannot easily accommodate
liquids so can cause severe
structural damage
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and zirconia (ZrO,). A summary of some of the commonly used methods of size
reduction is given in Table 6.4.

6.4.4 Generating random orientation

In order to generate peak intensities that are representative of the intensity-
weighted reciprocal lattice, the crystallites in the powder must not only be
sufficient in number, but they must also be randomly oriented. That is, each
crystal orientation should have the same probability of diffracting.

A number of sample preparation methods can be used to minimize preferred
orientation. For flat specimens, back-pressing and side-loading into the sample
holder tend to produce much less preferred orientation than front-mounted
samples. However, they tend not to be very effective for phases with extreme
morphologies like clays. The addition of solid diluents such as gum arabic,
glass, gelatin or the use of a binder material can reduce preferred orientation,
but will contaminate the sample, increase the average transparency, and pro-
duce amorphous scatter (resulting in an increase in the pattern background) or
the appearance of extra peaks in the pattern. Spray drying is quite effective
in reducing preferred orientation, but is not suited to small samples (<1 g).
To work effectively, the particles used in a spray drier should be <5 um. Sample
motion at 90° to the diffraction vector produces the most effective reduction of
preferred orientation. The added benefit is that the sample motion also
improves particle statistics, but it should be borne in mind that rocking changes
the 2:1 20: 0 relationship in the Bragg—Brentano case.

6.4.5 Removing extinction

Multiple diffraction of the X-ray or neutron beam within the crystallites
(extinction) can result in the systematic attenuation of the high-intensity, low-
angle data. The effect is most commonly observed in a material with larger
perfect crystallites and is rarely a problem with fine powders. Hence, the effect
can be reduced by fine grinding to decrease the mosaic size and/or introduce
lattice strain. Extinction can also be reduced by decreasing the wavelength
used in the experiment. Care must be taken in interpreting the presence of
extinction in a sample as it is often confused with other effects that cause similar
decreases in large peak intensities, such as detector dead time, preferred
orientation or surface roughness (for reflection geometry).

6.5 The instrument

The choice of diffraction instrument is often governed by availability rather than
by careful consideration of the instrument most suited to the needs of the
experiment. While it is always easier to collect data on a laboratory instrument
than to travel to the large, and often difficult to access, neutron and synchrotron
sources, this should not be the governing criterion in selecting the instrument.



106 SAMPLE PREPARATION AND DATA COLLECTION

6.5.1 What radiation to use—X-rays or neutrons?

Structure solution is generally easier with X-rays because (a) the phase problem
is more likely to be solved for a particular subset of the atoms in the asymmetric
unit (i.e. the heavy atoms) and (b) the resolution of X-ray instruments is gen-
erally better than that available at neutron sources (Hill and Cranswick 1994).
However, for structure refinement, precise structural parameters are more likely
to be derived from neutron data because (a) the distribution of scattering power
is more uniform between elements and (b) the fall-off in reflection intensities
with decreasing d-spacing is not as severe.

Some of the issues and recommendations to be considered prior to the
selection of the instrument are summarized in Table 6.5. Further details are also
given in Chapters 3-5.

6.5.2 What wavelength to use?

Once the instrument has been selected, an appropriate choice of wavelength,
which is not merely dictated by the usual laboratory setup, also needs to be
made. The essential criteria to be considered are that (a) for structure solution
using Direct methods, more than 10 | E| values of reasonable magnitude should
be collected for every atom in the asymmetric unit (Cheetham and Wilkinson
1991), (b) for structure refinement, more than 10 reflection intensities should be
collected for every structural parameter in the model (Hill and Cranswick 1994),
and (c) for X-rays, some elements in the sample may cause excessive fluores-
cence or absorption when exposed to certain wavelengths.

The observations to parameters ratio should be maximized for best results, so
a short wavelength may have to be selected to ensure that sufficient reflections
fall within the accessible diffraction sphere or a longer one to attain a better
separation of the reflections. For transmission geometry, the effects of absorp-
tion in the sample and the beam path should be kept to a minimum. This is best
achieved by selecting a very short wavelength or a wavelength on the low-
absorptionside ofan absorptionedge. Ifthe experiment ismaking use of the effects
of anomalous dispersion for structure solution or site-occupancy refinement
(Attfield 1992), fine tuning of the wavelength and hence access to a synchrotron
source will be required. The presence of components in the sample that produce
fluorescence may require the selection of a wavelength that avoids this effect and
its adverse influence on background levels. If a special sample environment is
required in which only a limited range of diffraction data can be observed (for
example, in a pressure cell), the use of a short wavelength is recommended.

6.5.3 Number of ‘independent’ observations (integrated intensities )

The number and density of reflections in a diffraction pattern is governed not
only by the wavelength used to collect the data but also by crystal symmetry and
unit-cell size. For example, cubic and triclinic cells each with a volume of
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Table 6.5 Summary of the issues which need to be addressed in the collection of
diffraction data and recommendation of the most appropriate source to use

Issue Conventional High- Synchrotron Low- High-
laboratory  resolution X-rays resolution  resolution
X-rays? laboratory neutrons®  neutrons®
X-rays®
Intensity at v no v no some third
sample generation
instruments
Unit cell fair v v poor v
determination
Heavy short A short A short A v v
X-ray reflection reflection
absorber geometry geometry
Light atom no no no v v
in presence
of heavy
atom
Hydrogen no maybe maybe when when
atoms deuterated deuterated
Large unit no v v no v
cell (complex
structure)
Magnetic no no no v v
structure
Thermal poor v v poor v
parameters
Line-broadened v compromised compromised v compromised
sample
Availability v v competitive  competitive competitive
at low cost access access access
Very small v v v v no
sample size
Non-ambient maybe maybe v v v

environment

#Characteristic doublet present, minimum FWHM ~0.12° 20

bSingle wavelength (incident beam monochromator), minimum FWHM = 0.06° 26

°First generation neutron facilities with minimum FWHM ~0.1025° 24 at low angles, but rising
rapidly thereafter

9Second and third generation instruments with minimum FWHM ~0.10° 26 at 110°-135°. At
time-of-flight sources, the equivalent FWHM in 26 is artan § where « ranges from 0.05 to 0.25.

1000 A* and one lattice point per unit cell produce markedly different numbers
of reflections and reflection density in a pattern (Table 6.6).

Since the intensities of overlapping reflections are correlated with each other,
the available information in a powder diffraction pattern is rarely equivalent to
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Table 6.6 Calculation of the reflection density and total number of
reflections in a diffraction pattern up to 110° and 140° 26, respectively
for 1000 A* cubic and triclinic unit cells, using a wavelength of 1A (Hill

1993)
Symmetry Average reflection Maximum reflection  Total reflections
multiplicity density at 110° 26 up to 140° 29
(reflections/degree)
Cubic 24 14 1150
Triclinic 2 170 13900

that of a full single-crystal dataset. At one extreme, when reflections completely
overlap, as for Friedel pairs and those with systematic or accidentally exact
redundancies in their d-spacings, the information that is extractable from the
pattern is reduced to a single observation for the overlapping set. As the centroids
of the overlapping reflections move apart, progressively more information about
the individual components is realizable in the deconvolution process. This leads
to greater confidence in the determination of the individual reflection intensities
and therefore, to a higher chance of success in structure solution. Clearly, the
amount of independent information (i.e. reflections) can be substantially reduced
if the unit cell is large, if the cell dimensions are accidentally related (e.g. a ~2b)
and/or the resolution of the instrument is poor. Altomare e al. (1995) have
suggested a method for quantitatively estimating the amount of reflection
overlap, whilst David (1999) has suggested an alternative method. Either method
can be used to make a quick estimate of the number of ‘independent’ reflections
in a diffraction pattern, for use as a guide for assessing whether or not a problem
is tractable and, if so, what data collection conditions are appropriate.

6.5.4 What geometry to use?

The selection of which diffraction geometry to use will be largely governed by
sample related considerations that include (a) the amount of material available,
(b) whether aberrations such as preferred orientation are present, and (c) whether
the sample will remain stable over the duration of the data collection. A small
amount of weakly diffracting material may require simultaneous detection of
the entire pattern using a position sensitive detector or an image plate system in
order for the data collection to be made within a reasonable period of time.
These and other sample-related conditions and recommendations for instru-
ment geometry are summarized in Table 6.7.

6.5.4.1 Flat-plate sample

This is still the most common geometry used in laboratory X-ray facilities.
Detailed discussion of its relative merits can be found in Cullity (1978),
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Table 6.7 Details of sample related problems and recommendations for appropriate
instrument geometry

Sample Condition Recommended Geometry

Preferred orientation present Transmission—capillary (Debye—Scherrer) with

sample spinning (preferably Gandolfi-type)
Area detector with averaging or integration of
intensity around the Debye cone

Heavy absorber Reflection geometry with X-rays, or use neutrons
Medium to low absorber Transmission—capillary or thin film

Absorption can be decreased further by diluting
sample or using shorter wavelength

Large crystallite size, but If the crystallites are single, consider microcrystal

sample cannot be ground diffraction, otherwise

Transmission—capillary with Gandolfi-type
sample motion

Small sample Transmission—capillary or thin film
Weakly scattering or Position sensitive detector
multi-phase Multiple detectors
Film or image-plate system
Unstable sample or Position sensitive detector
dynamic study Multiple detectors

Film or image-plate system

Klug and Alexander (1974) and Jenkins and Snyder (1996) and will not be
repeated here.

In summary, the important points to remember for reflection geometry

include:

1.

For accurate measurement of peak intensity, the sample must be ‘infinitely’
thick to the radiation employed or an intensity correction must be applied.
Equation (6.2) shows the relationship between sample linear absorption
coefficient and sample thickness.

For a sample with a low absorption coefficient, the penetration of the beam
into the sample will result in a significant peak shift and asymmetric
broadening unless the incident beam has zero, or very low, divergence (as at
a synchrotron X-ray source).

The collection of representative intensities requires that the footprint of the
incident beam fall on the sample at all values of 20.

Other aberrations can cause loss of intensity at low 26 in patterns collected
on laboratory instruments. These include (a) sample transparency,
(b) anode self absorption, (c) axial divergence and (d) curvature of the
Debye—Scherrer conic section entering the receiving slit. An additional
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intensity correction has been proposed to calibrate the instrument for these
effects (Matulis and Taylor 1993).

6.5.4.2  Thin sample

This is an optimal geometry for the determination of accurate peak positions for
pattern indexing and unit-cell refinement on a laboratory source, because it
eliminates most of the aberrations associated with ‘thick’ samples (Klug and
Alexander 1974). However, thin sample mounts are not uniform or infinitely
thick, so they are not suitable for the collection of intensity data. Furthermore,
this technique may induce preferred orientation in the sample making the peak-
intensity estimates unreliable.

The best substrate for thin sample presentation is a ‘zero-background’ plate
consisting of single crystals of silicon or quartz cut at an angle that ensures that
no diffraction peaks are observed in the diffraction range of interest (Narasimha
Rao et al. 1996). Thin sample mounts can be prepared by (a) sprinkling a small
amount of the sample onto a substrate coated with a viscous material (grease,
oil, etc), or (b) placing a small amount of powder on a clean substrate and
mixing it with a few drops of a suitable solvent (e.g. ethanol) to form a ‘slurry’.
Evaporation of the solvent leaves the sample as a thin film on the surface.
Suitable patterns can be obtained from very small amounts of material. Care
needs to be taken with this type of mount to ensure that the sample is at the
correct height in the diffractometer so that aberrations due to sample offset are
minimized, although this is not a problem for parallel beam geometry.

6.5.4.3 Capillary sample

Transmission (capillary) geometry is used almost universally for neutron and
synchrotron data collection but is less common for laboratory X-ray sources.
However, high-resolution transmission diffractometers with a focused Debye—
Scherrer geometry and a small position-sensitive detector are gaining in popu-
larity, especially in the structure solution community. The primary advantage
of a capillary mount is the virtual elimination of preferred orientation effects
that are the bane of flat-specimen geometry.

Another advantage of capillary geometry is that very small amounts of
sample can be examined, down to a few milligrams with careful sample hand-
ling. However, particle statistics can become a problem since very little material
is examined in the experiment. The sample should be finely ground to facilitate
packing in the capillary and should be spun during the data collection to
minimize particle statistics errors.

While changes in sample absorption as a function of diffraction angle can be
neglected in symmetrical flat-plate geometry, absorption of the X-ray beam in
capillary geometry diminishes the low-angle intensities relative to the high-angle
data. A correction, based on p (the linear absorption coefficient), R (the
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sample radius) and the packing density ratio, is required to adjust the calcu-
lated intensities during pattern decomposition or refinement (Hill and Madsen
1991).

In the case of very high absorption, it is recommended that the problem
be addressed prior to the collection of data by diluting the sample with an
appropriate low-absorption-coefficient material. For example, diamond powder
has a low absorption coefficient for most useable wavelengths and has a paucity
of lines, resulting in minimum interference with the pattern. Figure 6.1 shows
the effect of sample absorption on patterns collected for (a) pure LaBg and (b)
LaBg diluted with 77 weight per cent diamond powder. The few diamond peaks
can be either excluded from the subsequent structure solution and refinement or
included as an internal standard.

6.5.5 Sources of instrument-related error

Detailed discussion of the sources of error in laboratory X-ray applications of
Bragg—Brentano and Debye—Scherrer geometry can be found in Klug and
Alexander (1974) and Jenkins and Snyder (1996). In summary, the major points
to consider in the configuration of a Bragg—Brentano instrument with divergent
beam optics include:

1. View the X-ray tube focus laterally (with a small take-off angle) for the
highest resolution. The use of an incident beam monochromator to
eliminate the Ko, component further enhances the resolution (Madsen
et al. 1996; Louer and Langford 1988).

2. Sample displacement error causes peak shifts with a maximum at low values
of 20. To minimize this effect, ensure that the sample is positioned
accurately at the centre of the diffractometer.

3. Flat-specimen error causes minor peak asymmetry and peak shifts except
at low values of 26. Reduce the irradiated sample length to reduce the
impact.

4. Axial divergence causes asymmetric peak-broadening with maximum effect
at low and high 26. Insertion of Soller slits into both incident and diffracted
beam positions will reduce the effect (Madsen and Hill 1988).

5. A mis-setting of the 2:1 relationship between the 20 : 6 axes causes peak-
broadening with a maximum effect at low values of 26.

6. Sample transparency in low-absorption-coefficient samples causes asym-
metric broadening and peak shifts with maximum effect near 90° 26.

The use of parallel beam geometry (such as at a synchrotron source)
eliminates the effects of the displacement, transparency and flat-specimen errors
that plague focusing geometry. Recent advances have seen the development of
multilayer mirrors capable of producing (a) parallel beams from the normally
diverging laboratory source, or (b) focused beams for specific applications
(Gobel 1995; Schuster and Gobel 1996). They can be used to produce high
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Fig. 6.1 X-ray diffraction patterns (CuKe) for NIST SRM660 LaBgin a 0.3 mm capillary
(top) and LaBg diluted with 77 wt % diamond powder (bottom).

intensities from the small sample volumes encountered with capillary geometry
and can be expected to have considerable impact on laboratory instrumentation
in the future.

6.6 Data collection

Once the sample has been prepared and the instrument configuration selected,
only the conditions under which the diffraction data will be collected remain to
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be determined. What range of d-spacings (diffraction angles or energy) should
be scanned? How frequently should the pattern be sampled? That is, what
angular or energy step interval should be used? How many counts should be
accumulated at each step? This determines the overall pattern intensity, and
hence the counting statistics, which can vary markedly across the pattern and
between individual reflections. Will a constant step counting time suffice, or will
the use of a variable step counting time regime (Madsen and Hill 1994; David
1996) be necessary to provide more uniform, or specifically customized,
counting statistics across the pattern?

Hill and Madsen (1987) have shown that variation in all of these factors have
the potential to influence the outcome of a Rietveld refinement substantially.
Judicious selection of data collection conditions can provide significant
improvement in the accuracy and precision of pattern decomposition and
structure refinement from conventional X-ray diffractometers, and this could
decrease the need to resort to the use of synchrotron or neutron data.

It must be remembered that the fundamental measured quantities (observa-
tions) in a diffraction pattern are the integrated intensities of the reflections. The
intensities collected at each step serve only as multiple, variably-weighted,
estimates of these values. The precision of peak-intensity measurement can be
improved by increasing (a) the counts accumulated at each step, that is
increasing the step counting time T, and (b) the number of points, N, measured
across the peak. Often, the temptation is to collect the data with large values of
N and T to maximize counting statistics across the pattern. However, the
resulting increased precision is only useful up to the point where counting
variance becomes negligible in relation to other sources of error; thereafter
experiment time is wasted. For example, if the sample is affected by the presence
of severe preferred orientation, the collection of highly precise data will not
help. Time would be better spent in remaking the sample and recollecting
the data.

6.6.1 Step time and width recommendations

Hill and Madsen (1984, 1986) have undertaken systematic studies on the effect
of step counting time and step width on Rietveld refined parameters obtained
from constant-wavelength laboratory X-ray data. They have concluded that,
for many relatively simple materials such as corundum, olivine and rutile-type
compounds, it is sufficient to collect from 5000 to 20 000 counts on the top of the
largest peak in the pattern. Beyond this, errors in the preparation and pre-
sentation of the sample and limitations of the model used for fitting the data
dominate the counting errors. However, if one or two large peaks dominate the
pattern, or the pattern is particularly complex, with a high level of peak overlap,
it may be necessary to collect more counts to ensure adequate counting statistics
in the weaker peaks.
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For Rietveld analysis, the step width should be selected to be about 0.2-0.3
times the minimum observed FWHM in the pattern (Hill and Madsen 1984,
1986). This is again based on the fact that at shorter step widths, insignificant
advantages accrue in relation to the precision of the integrated peak intensities,
at a considerable cost in data collection times. Note that the exact value of step
width should decrease with increasing complexity of the diffraction pattern and
the degree of overlap between adjacent peaks. The optimum step width is a
compromise between (a) increasing serial correlation and unnecessarily long
data collection times at short step widths and (b) decreasing intensity precision
at long step widths.

For pattern decomposition, the step width might be less than 0.1 times the
minimum observed FWHM in the pattern for complex materials. A smaller step
width than that used for Rietveld refinement is required since, in pattern
decomposition based only on a unit-cell model for peak positions, it is not
possible to take account of the interactions between the intensities of strongly
overlapping reflections.

6.6.2 Variable counting time data collection

The intensity in constant-wavelength X-ray diffraction patterns is observed to
decrease strongly up to angles of about 100° 20 with a small recovery at higher
angles. There are several physical factors which cause this variation, including
the atomic scattering factors and thermal vibration, but the dominant term (for
X-rays) is the effect of the Lorentz-polarization factor (Madsen and Hill 1994).
While other factors, including reflection multiplicity and absorption (for
capillary geometry), partially compensate for this decrease, there is an overall
change in intensity across the pattern that can be as much as two orders of
magnitude. While neutron patterns also show a decrease in intensity with dif-
fraction angle, the variation is not as large as for X-rays since there is no angular
dependence for the nuclear scattering factors.

As a result of this severe decrease in X-ray peak intensity at higher Bragg
angles, the high-angle data is often deemed to be too ‘weak’ to contribute to the
analysis and is not collected at all. However, the density of peaks in the mid- to
high-angle region of the pattern is much greater than at low angles. Thus the
high-angle region is potentially able to contribute more information per degree
than the low-angle data. In addition, the high-angle data is more likely to be
largely free from the aberrations (such as surface roughness and instrumental
aberrations) that affect the low-angle data. Furthermore, these data can be
critical to structure solution, especially if a Direct methods approach is used.

The conclusion is that, not only should the high-angle data be collected, but
they should be collected with appropriate counting statistics. Advantages can
accrue if the data are collected in such a way that each reflection receives
approximately the same weighting during data analysis. This can be achieved by
using a variable counting time (VCT) strategy that adjusts the step counting
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time during data collection so that short step counting times are used at low 20
where the average peak intensity is large, and progressively longer times are
used at high 20 to compensate for the intensity fall-off. This ensures that all
moderately-sized peaks have approximately equal intensity, thus providing
near-constant counting statistics across the entire diffraction pattern. Figure 6.2
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Fig. 6.2. Rietveld refinement output plots for tourmaline collected with (a) fixed and
(b) variable step counting times using Cu K« X-rays, Bragg—Brentano geometry. The
observed data are indicated by the points, the calculated profile as the continuous line
overlying them. The lower curve is the difference between calculated and observed while
the short vertical tick marks represent the positions of the allowable Bragg reflections.
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shows plots of fixed and variable counting time X-ray diffraction data collected
using Cu Ko radiation from a sample of tourmaline. The advantages of
employing a VCT strategy as a specific part of the structure solution process
have been demonstrated clearly for both Direct methods of structure solution
(Shankland ez al. 1997) and global-optimization-based methods (David ez al.
1998).

6.7 Conclusions

Sample preparation, selection of an appropriate wavelength and instrumental
configuration, consideration of the number of reflections to be collected, and
choosing the optimum step width and intensity with which to sample the
powder pattern are all crucial aspects of the process of structure solution and
refinement. Furthermore, different stages of the process place different demands
on the experiment so that these conditions are unlikely to be satisfied by a single
dataset. Thus, it is recommended that separate patterns be collected for
reconnaissance, indexing, decomposition and refinement, each collected
with due consideration of the instrumental configuration and data collection
conditions outlined in this chapter.
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7

Autoindexing

Per-Erik Werner

7.1 Introduction

In principle, all information available in a single-crystal diffraction pattern
is also present in a powder diffraction pattern. Suppose all the pages in a
book have been printed on top of each other on one single sheet. Obviously
everything written in the book is present on the paper, but this does not
mean that we are able to extract the information. Fortunately, however, there
are some special features in a powder diffraction pattern that make it possible
to extract its three-dimensional information in a step-wise manner. Thus, we
can distinguish three different kinds of information: the peak positions, the
peak shapes and the integrated intensities. If not only the peak positions but
also the peak shapes or the intensities had been functions of the unit-
cell dimensions, we would probably never have been able to index powder
patterns.

Powder indexing is important not only in order to find unit-cell dimensions.
It is a way to reconstruct the three-dimensional lattice that produced the
one-dimensional spacing information. Thus, if we want to make use of
the integrated intensities to solve the crystal structure or of the peak shapes
to study size and strain properties of the sample, indexing is a necessary
first step.

The lattice of a crystalline material is also highly diagnostic. Thus, a material
can be registered or identified once any primitive cell that defines the lattice has
been determined. The NBS Crystal Data File contains unit-cell data for many
more substances than the total number of patterns, indexed and non-indexed, in
the PDF 2 database (Mighell and Stalick 1980).

7.2 Basic relations

For reasons to be discussed later, it is often desirable to form the dot product
of a reciprocal-lattice vector with itself:

Fiy -ty — (ha* 4 kb* 4 Ic) - (ha + kb* + Ic). (7.1)
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Carrying out the dot products and collecting terms yields:

1
(er1)2: Z — a4 D" + 12 + 2hka* b cos~*
+ 2kIb* ¢ cos o + 2hla" ¢ cos 37, (7.2)

where dj; is the interplanar spacing related to the diffraction angle by Bragg’s
law:

2 dhkl sin@ = \. (7.3)

For powder indexing, the quantity 1/d3,, or 10*/d5,, is often designated Q.
We shall here use the designation:

104
Onet = - (7.4)

hkl

but it should be noted that from eqns (7.3) and (7.4) it follows that the differ-
ence between Q) and sin®d is only a scale factor (200/ ).

For the following discussion, eqns (7.2) and (7.4) are used to define the six a;;
parameters in the following equation:

Qhkl — h2a11 + k2a22 + 12(133 + hk(l12 + kl(l23 + hl(l13. (75)

The parameters a; are related to the reciprocal cell, as shown above, and thus,
also to the direct cell parameters. The number of a;-parameters to determine
varies from one to six, depending on the symmetry (see Table 7.1).

These linear relations between observed Q-values and the a;-parameters form
the basis for a large number of powder-indexing procedures.

Table 7.1 Quadratic forms and relations between ¢; and reciprocal unit-
cell parameters

Symmetry Quadratic form

Cubic Q=F+E+P-an

Tetragonal Q=W+ a+P a3

Hexagonal Q=F+hk+F an+F-as

Orthorhombic Q = h2 ~an -+ k2 “dx -+ 12 - ds3

Monoclinic Q :h2 ~dy +k2’022+12 'd33+hl'd13

Triclinic Q = hzdn -+ k2d22 -+ 12d33 -+ hkdlz -+ kldzj, -+ hla13

2 2 2
aj1=K-a"; app=K-b*"; az3=K-c*; ajp=K-2a*b*cos v*; a;3= K- 2a*c*cos 3*;
a3 =K 2b*c*cosa*; K=10%



120 AUTOINDEXING

7.3 The indexing problem

For each observed Q-value we need to find three crystallographic indices (sk/)
for which, in the general triclinic case, the following inequalities are fulfilled:

Oobs — A < /’126111 + k2a22 + 12(133 + hkayy + klars + hlars < Qops + A (7.6)

If the measured Bragg angles, 6, have the same accuracy for all reflections, A
should be a function of #. In modern least-squares unit-cell refinement
programs, the accuracy in 26 is usually given as an input parameter. However,
indexing programs for unknown powder patterns, where several hundred
thousand trial indexings may be tested, sometimes operate with fixed A-values.
Unit-cell dimensions found by an indexing program for unknown cells should
always be refined later with a separate program where a// lines and a// conditions
for absences are used. At that stage, the allowed deviations between observed
and calculated values can be given in 20.

In this chapter, individual least-squares refinement programs, not included in
autoindexing programs for unknown unit-cell dimensions, are not discussed. It
should be noted, however, that flexible dialogue programs, where alternative
refinements can be carried out (by using generated single-indexed lines, variable
error bounds, various conditions for systematic absences ((hk/)’s fixed in
agreement with calculated intensities etc.)) are very useful tools for checking and
refining unit cells derived by autoindexing procedures.

The conditions in eqn (7.6) are necessary but not sufficient for a physically
plausible indexing. This is easy to understand from the fact that any powder
pattern can be indexed formally with a cubic unit cell having a cell axis of say
10° A, that is, a;1 ~ 10 ~°. Then it should be possible to find large integers 4, k
and / for which the inequalities (7.6) are fulfilled, with extremely small A values,
for all observed Q-values. Obviously, however, this will not be a physically
plausible indexing. We expect the low-angle lines in a powder pattern to have
(hkDs that are small integers. Thus, regardless of how we index a powder pat-
tern, we need a simple criterion for the physical plausibility of the indexing. One
of the most important contributions to the field of powder indexing was made
by P. M. de Wolff (1968), who successfully derived a figure-of-merit test for this
purpose. The de Wolff figure of merit M, is defined by the expression:

O
2:-(0) - Ny~

Here N, is the number of different calculated Q values up to Q,g, which is the
Q value for the 20th observed and indexed line; (Q) is the average discrepancy in
Q for these 20 lines. There are few exceptions from the rule that, if all of the first
20 lines are indexed and M»q > 10, the indexing is physically reliable. Note that
the term ‘correct’ here may also include indexing with common factors in the
quadratic forms (see Table 7.1). For example, a pattern indexed with all 2 =2nis

My = (1.7)
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not regarded as incorrect. The a-axis may of course be divided by 2 in the final
least-squares refinement of the unit cell. A less obvious but frequently occurring
example is the indexing of a tetragonal pattern with all 4>+ k* = 5n. Two kinds
of exceptions, geometrical ambiguities and dominant zone problems, will be
discussed below.

De Wollf also stated that if the number of unindexed lines below Q5q is not
more than two, a value of M, > 10 guarantees that the indexing is substantially
correct, that is, it may be confirmed by single-crystal data. De Wolff’s experi-
ence was limited to a large number of manual tests, and exceptions to this rule
can be found with computer programs for powder indexing, especially in the
case of dominant zone patterns (see below). Experience shows, however, that
such unindexed lines are often found to be impurity lines or represent errors of
measurement. Unless better solutions are found, it may, therefore, be worth
checking solutions with one or two unindexed lines if the de Wolff figure of
merit is high.

Another figure of merit, the F index, has been defined by Smith and Snyder
(1979):

1 N
=182 Ny (7:8)

where N(f,) is the number of different calculated Q values up to 0, which is the
0 value for a selected limit, (A20) is the average discrepancy in 20 for the number
of observed lines, N, below 0,.

The F index is probably superior to de Wolff’s M, index for ranking solu-
tions, but it has a disadvantage when estimating the physical plausibility of a
suggested unit cell. The fact that the M index increases systematically with
symmetry is not a disadvantage. A cubic trial indexing of a powder pattern is
more likely to be correct than a triclinic one, the fraction of observed lines and
accuracy being equal. It should be noted that the de Wolff figure of merit is
defined for exactly 20 lines. According to experience, the F index does not vary
with the number of lines as much as a generalized M figure of merit. This may
be the reason Fjq is often reported on the PDF-2 cards.

The de Wolff figure of merit is defined to become (statistically) equal to 1 for
a completely arbitrary indexing. This is the reason for the factor 2 in the
denominator. There is no upper limit for M»,, as the discrepancies between
observed and calculated Q values may become infinitely small. Powder dif-
fraction patterns recorded by synchrotron radiation have sometimes been found
to give Mg values in the range 500-700. Values in the range 20-60 are often
obtained for good routine work on pure, well-crystallized samples, when
focusing cameras and an internal standard substance are used, or when dif-
fractometer measurements are made in the way described by NBS. Although
(Q) may decrease with increasing cell dimensions, Ny will increase. The
de Wollff figure of merit is not only a test for accuracy in the diffraction data but
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also a test for how well the calculated pattern will cover the observed one. The
quantity Mg takes account of the amount of ‘coverage’ (i.e. the fraction of lines
actually observed).

Index triples falling under obvious general absences should be disregarded in
computing N,q. Therefore, the M, values calculated by indexing programs for
unknown patterns should normally be recalculated by a least-squares refine-
ment program where all systematic absences are taken into account. The choice
made by de Wolff to use the first 20 lines is a compromise based on experience.
The number of observed lines should be reasonably large in relation to the
number of unit-cell parameters. On the other hand, the indexing of high-angle
lines is always much more ambiguous, thus adding less to the reliability than the
low-angle lines. It is also a general experience that the error of the measurement
tends to increase with Q.

It is impossible to make a rigorous statistical test of the reliability of powder
indexing. Although recent experience has shown that there are cases when
My > 10 is no guarantee of correctness, the importance of the de Wolff figure-
of-merit test in powder indexing can hardly be overestimated.

7.4 The dominant zone problem

The main situation in which the de Wolff figure-of-merit test may fail is when a
dominant zone is present in the pattern, that is, one cell axis is much shorter
than the other two. This has been extensively illustrated by Shirley (1980). The
obvious reason for failure in the figure-of-merit test in such cases is that with
one index equal to zero for most of the low-angle lines, an extra degree of
freedom is introduced in the calculations. The problem may be circumvented,
however, if the indexing program used is designed to start with a dominant zone
test. In extreme cases, when only a few of the first 20 lines depend on the short
axis, one may at least get a clear indication of the existence of a short axis, even
if a reliable indexing is difficult to find.

Another way to circumvent the dominant-zone problem is to use an indexing
procedure that takes advantage of the fact that low-volume solutions are more
likely to be correct. Pseudo solutions may also be revealed by analysing a/l lines
in the pattern.

7.5 Geometrical ambiguities—derivative lattices

The fact that only the length of the reciprocal-lattice vector, but not the three-
dimensional vector itself, is observed in a powder pattern may cause some
lattices with different, though related, reduced cells to give geometrically
identical powder patterns. Such geometrical ambiguities can only occur between
cells of orthorhombic or higher symmetry. Perhaps the best-known example is
when a hexagonal pattern is (falsely) indexed by an orthorhombic cell having
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the cell dimensions a/2, av/3/2 and ¢, where @ and ¢ are the hexagonal cell
dimensions. Fortunately, it is easily detected, because of the square-root-of-
three relation between two of the orthorhombic unit-cell axes. The problem has
been described and analysed in detail by Mighell and Santoro (1975).

Autoindexing programs will often find a superlattice with twice the volume of
the true lattice or a sublattice with one half of the volume. Super and sublattices
are two forms of derivative lattices as defined by Santoro and Mighell (1972).
Unindexed peaks can occur either from a second phase or from a derivative
lattice. Usually superlattices are easily detected from the occurrence of common
factors in the quadratic forms (see Table 7.1). In order to avoid sublattices—
other than geometrical ambiguities—it is important to include all weak reflec-
tions, especially in the low-angle region (Mighell and Stalick 1980).

7.6 Errors in measurements

Powder indexing would be quite easy if errors in measurements did not exist. As
stated by Shirley (1980): ‘Powder indexing is not like structure analysis, which
works well on good data, and will usually get by on poor data given a little more
time and attention. Powder indexing works beautifully on good data, but with
poor data it usually will not work at all.” This has been expressed in several ways
by different authors. Smith and Kahara (1975) stated: ‘Our experience with data
recorded by Debye—Scherrer technique has been especially disappointing. The
far greater success with data from focusing cameras reflects greater accuracy
and resolution per se, smaller systematic errors, and greater detectability of
weak reflections. For high-quality diffractometer data, such as the NBS pat-
terns, our experience has likewise been good. However, for data sets having
non-trivial systematic errors, successes have been as limited as with Debye—
Scherrer data.” Shirley (1980) also stated: “The paramount importance of
resolution for indexing work explains the high success rate for focusing camera
data, especially from Guinier-H&4gg instruments, whose resolution can only be
described as superb. It is rather less common (and considerably more expensive)
to obtain as good resolution with diffractometer data.” As shown by the present
author (Werner 1992) both precision and accuracy in 26 are normally better
then 0.01° in routine measurements of Guinier photographs, if an internal
standard and an automated film scanner system are used. It has been shown by
Louér and Langford (1988), however, that a conventional diffractometer with
an incident-beam monochromator may have an instrument resolution function
with a minimum FWHM as small as 0.065° (20).

Average deviations between observed and calculated 26-values, determined
by using synchrotron radiation, are often less than 0.002°. Such high data
quality is extremely useful for powder indexing, but normally, indexing prob-
lems must be solved from ordinary laboratory data prior to data collection at
a synchrotron source. With the high peak/background ratio obtained with
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synchrotron radiation, extremely minor impurity contributions may also give
observable diffraction peaks. If intensity differences are very large in the low-
angle range, it may help to omit the very weak lines in a trial indexing. As soon
as a plausible indexing is found, all lines should be tested with a separate dia-
logue program as discussed above.

In the instruction manual for the indexing program ITO, the program author,
J. W. Visser writes: ‘Do not use a Debye—Scherrer camera unless the unit cell to
be expected is small. Would you like to solve a jigsaw puzzle when half the pieces
are missing’. From the same manual may also be quoted: ‘Finding the unit cell
depends for 95 per cent on the quality of the input data. A random error of 0.03
degrees two theta can usually be tolerated, but a systematic (zero-point) error of
0.02 degrees is probably disastrous. Check your input lines against their higher
orders.’

It is well known that it is possible to obtain accurate d-values by using an
external standard technique. From the frequency of occurrence of low quality
data in the PDF-2 database, however, it may be concluded that unless an
internal standard technique is used, experimentalists often have very limited
knowledge of the data quality they have obtained. The internal standard method
is recommended for powder indexing, as it can be used not only to correct the
zero-point error but also to correct for sample-dependent 26-error functions.

In the following, the strategies used by three different indexing programs will
be briefly discussed. They represent three completely different methods.
The programs to be discussed are ITO, DICVOL and TREOR, listed by
McCusker (1992) in a review about integrated software for structure solution
from powder data.

In the programs, different ways are used to express the maximum allowed
discrepancies between observed and calculated data. In ITO and DICVOL,
discrepancies are given in °20, whereas in TREOR, one low-angle and one high-
angle maximum deviation is given in sin®6. In Table 7.2, the maximum accepted
deviations for all three programs are converted to Q values for comparison.
If the input data to TREOR are given as d values (in A) they are normally
converted to sin’6 values for Cu Ka; radiation.

Table 7.2 Maximum accepted discrepancy between observed and
calculated Q values versus 26 for Cu K radiation. The values are
calculated for the default parameter settings used by the programs. In
all programs the tolerances may easily be changed

26(°) ITO DICVOL91 TREOR90
10 1.5 1.2 34
20 3.0 23 34
30 4.4 33 6.8

60 7.6 5.7 6.8
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As only the first 20 lines are necessary for the calculation of M, it is rare that
diffraction angles above 30° (60° in 26) are used to determine the reliability of
the indexing if Cu Ko radiation is used for the data collection.

7.7 Indexing programs

7.7.1 ITO

Reciprocal lattice points lying in a plane through the origin constitute a central
zone in reciprocal space, and the corresponding powder lines are said to belong
to the same zone. Any such zone may be described by two variable indices 4 and
k, and needs only three parameters:

Qo = P an + kK axy + hkay,. (7.9)

Any two points in the reciprocal lattice, unless they are both on the same line
through the origin, may be used to define such a plane. If they are on the same
line, they may both be described as 400. The basic idea proposed by de Wolff
(1958) and programmed by Visser (1969) in the indexing program ITO is to
make a systematic search in the array of observed Q values to find as many
points as possible in such a zone. Two Q values, Q' and Q”, are selected and
used to define two reciprocal lattice vectors a* and b*, respectively (i.e. Q' = Q190
and Q" = Qg19). The lengths of the vectors may be written 1/d’ and 1/d”. Then
from the cosine law, it follows that for any point 440 in the zone:

1 h\’ kO W\ [ k .

il (E) + (7> +2(E> (7> cosy’, (7.10)
where d equals the length of the reciprocal lattice vector and ~* is the angle
between (the arbitrarily chosen) vectors a* and b*. Thus:

Qi = I - Qoo + k2 - Qoto + 2 - hk - (Q10 - Qoro)'* - cos . (7.11)
Let
R=2(Qio0 - Qorp)"/* - cosy". (7.12)
Then

(h* - Qo0 + K2 - Qo10 — Qo)

R= hk

. (7.13)

By inserting all observed Q values up to a reasonable limit for Q. and a few
positive integers for i and k, and by storing the absolute value of R, we get
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a great number of |R| values, some of which are equal within the limits of
error. From the list of R values, the most obvious concentrations are selected
and the zone angles v* are calculated. The accepted discrepancies used for this
zone-finding part of ITO is not the same as shown in Table 7.2. The default
value i 3.0 Q units, independent of the diffraction angle. For Q49 and Qg1o,
combinations of the first two or three lines are usually the most powerful
choices. When the multiplicity factor of a powder line is greater than two, its Q
value represents more than one point in the reciprocal lattice. Therefore,
combination of a line with itself is sometimes very useful, as the corresponding
orthogonal zone occurs rather frequently.

An important feature in ITO is that the zones found are checked for the
length of a* and b* and thereafter reduced. Just a brief list of the steps in the
program is given here. For details see Visser (1969) and the I'TO instruction
manual.

1. Find zones and reduce them.

2. Check the lengths of the base vectors and refine the three zone-parameters
with a least-squares method. Calculate an approximate probability, C, that
the zone is found by pure chance:

N,!

S i AU (7.14)

C

where N, is the number of calculated Q values in the zone of which N, give a
fit, p = (3 AQ)/Omax- The reciprocal values 1/C are used as quality values
for the zones.

3. Find pairs of zones with a common row and determine the angle between
these zones. This is probably the most difficult step, but it should be realised
that even when ITO does not find a reliable solution to the three-
dimensional indexing problem, it often finds correct zones.

4. Reduce the lattices found and transform if necessary so that the lattice is
described in a standard way.

5. Try to index the first 20 lines of the pattern and repeat this after a least-
squares refinement of the parameters. Calculate M,y and print out the list.

The program has a very flexible input and contains several options, for example
advanced procedures for zero-point correction, not discussed in this short
review.

7.7.2 DICVOL9Y1

DICVOL uses a successive dichotomy method for indexing accurate powder
patterns. The first version of the program was written for orthorhombic and
higher symmetries by Louér and Louér (1972). The method has been extended
to include monoclinic (Louér and Vargas 1982) and triclinic symmetries in
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DICVOLI1 (Boultif and Louér 1991). The search of unit-cells is exhaustive
within input parameter limits, although a few restrictions for the sk/ indices of
the first five diffraction lines have been introduced in the study of triclinic
symmetry.

The dichotomy method for automatic indexing of powder diffraction pat-
terns is based on the variation of the lengths of cell edges and interaxial angles in
direct space for finite ranges, which are progressively reduced by means of a
dichotomy procedure if they contain a possible solution. With this strategy, an
exhaustive search in an n-dimensional space (n being the number of unknown
unit cell parameters) is performed.

In order to illustrate the method, the procedure used for the cubic search is
described. The cell edge can be investigated from a value @, up to a maximum
value ays. The variation is made, for example, in steps of p=0.5A. The «a
(=b=c) axis length is tested in intervals of [ay + np] to [ag+ (n+ 1) - p] up to the
chosen a,,. For each interval, limits in Q are defined as a function of hkl:

R4+ +P

R+ K+ P

If, within error limits and for all observed Q values (usually the first twenty), ikl
can be found for which:

QO (ki) < Qons < Q. (hkl), (7.17)

then the interval [ag + np] to [ag + (n+ 1) - p] is divided into two equal parts and
the test procedure is repeated. The procedure is repeated six times. Thus, the
final step length is p/2°=78 - 10 “HA.

The search strategy is to go from high to low symmetries and to use partitions
of volume space, scanning successive 400 A3 shells of volume, except for triclinic
symmetry, where the shells are based on an estimated unit-cell volume V.

It has been shown by Smith (1977), from the examination of 1/N vs &° plots
for accurate triclinic patterns, that a simple approximate relation can be derived
for the unit-cell volume as a function of the number of lines N:

60 - &
Vet — 1/270% (7.18)
Corresponding relations can also be derived for higher symmetries, but they are
not very reliable, mainly because the conditions for absences are unknown.

The presence of a common zero index for the first lines of the pattern does not

impede finding the correct cell. As low-volume solutions are likely to be correct,
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pseudo solutions are usually avoided by the fact that small-volume tests are
made prior to large-volume tests.

The monoclinic symmetry is complicated by the fact that only a5, (see Table
7.1) is independent of the monoclinic angle 3. Furthermore, if all observed lines
are located within some limits, each domain has to be divided into 2* sub-
domains by halving the intervals, as the total domain is four-dimensional. In the
triclinic case, the dichotomy method is applied in Q space directly, because the
general relation of Q to the direct cell parameters is too complicated. In order to
reduce the computing times, some restrictions representative of the majority of
experimental patterns with triclinic symmetry are imposed on the first five lines.

The unit-cell parameters are refined by a least-squares method, and figures of
merit (My and Fy) are displayed. In order to help the user, the number of
solutions retained at each level of the dichotomy procedure is printed. An
examination of these numbers can be useful if too strict an absolute error limit
relative to the accuracy of the data has been applied to the input data. An
important feature of the program is its insistence that every observed line must
be indexed, which penalizes data containing impurity lines. It is, of course,
possible to rerun the program several times, omitting suspect lines in a suc-
cessive manner, in order to identify spurious lines due to impurities. The
strategy used by DICVOL, not to index patterns containing impurity lines, has
the advantage that the user is not allowed to ignore unindexed lines.

7.7.3 TREORY90

TREOR searches for solutions in index space by varying the Miller indices, and
Shirley (1980) has classified it as semi-exhaustive. The term was proposed for
programs containing ‘judicious deductions to limit the size of the solution field in
order to gain speed.” The first parts of the program were written and described by
Werner (1964), but the computer technology of that time did not allow a rig-
orous implementation of the principles. A more complete program version was
written and published by Werner, Eriksson and Westdahl (1985). The present
version of the program is described in the TREOR90 documentation file.

Although the general principles used for trial-and-error indexing are rela-
tively simple and straightforward, the success of the method is a function, not
only of data quality, but also of a large number of crystallographic decisions put
into the program. Thus, an essential part of the program is a standard set of
parameter values. They are termed normal values and represent accumulated
experience from several hundreds of indexing problems. The parameters are
referred to by keywords, and the user may easily change them. All keywords and
their normal values are listed in a documentation file.

The program will normally start with cubic symmetry and, in a step-wise
manner, test for lower symmetries. Higher order lines automatically correct
the first low-angle lines if present. Trial parameters a; (see Table 7.1) are
derived from base-line sets and it is therefore important that especially the
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low-order lines are accurately measured. Solutions are ranked primarily
according to the number of indexable lines among the first 19, and secondarily
according to the smallest cell volume. Therefore, if no solution is found with
more than, for example, 16 lines indexed in a trial phase, such unit cells may be
saved temporarily and later refined by a least-squares method. Trial cells are not
rejected because one or more lines cannot be indexed. This is avoided because of
the experience that it is usually impossible to identify an extraneous line a priori.
Furthermore, a small error in one or more of the base-lines may seriously affect
the trial parameters. The fact that several different base-line sets are tested
usually makes it possible, however, to find a correct solution. Dominant zone
tests are made for orthorhombic and lower symmetries. An algorithm for suc-
cessive reduction of trial-cell volume is used in monoclinic and triclinic tests,
and therefore, the user does not normally need to restrict cell volumes to values
below 2000 A* or cell edge maxima below the default value of 25 A.

If a satisfactory solution is found (i.e. normally an indexed pattern with
My > 10 and not more than one unindexed line among the first twenty), a short
output list containing only this solution is printed after least-squares refinement.
If the unit cell is monoclinic or triclinic, the reduced and the conventional cells
are derived. The reduction is only valid, however, if the cell is primitive.
Instructions are also given on how to rerun the program in order to test for
better solutions. This is important, because although the first solution found is
often the best one, this is not always the case.

If no satisfactory solution is found, the user can inspect the general output
list. This list may contain a large number of more-or-less possible indexing
solutions with My, > 6 and not more than three unindexed lines among the first
twenty. This often makes it possible to identify impurity or badly measured lines
in the pattern.

7.7.4 Why more than one indexing program?

As stated above, all indexing procedures are strongly dependent on the quality of
the input data. Crystallographers working in the field of powder indexing have
also often focused on accurate measuring systems. The indexing programs are
dependent on the data quality in somewhat different ways, however. Further-
more, derivative lattices, which are often found by indexing programs, are
sometimes detected by comparing output lists from different programs.

The programs ITO and TREOR are especially dependent on accurate
low-angle data, because the first lines play an important role in the indexing
strategies, whereas for DICVOL, data errors play a role independent of the
diffraction angle. A multitude of non-systematic absences can make it impos-
sible to find a solution with ITO, but is of much less importance for DICVOL or
TREOR. As ITO employs a general triclinic approach to the indexing problem,
whereas DICVOL and TREOR use relatively strong restrictions in the triclinic
tests, it can be expected that I'TO will sometimes solve triclinic problems that
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cannot be solved by the other two programs. DICVOL is less dependent on
dominant zone problems than TREOR, although this part of the program has
been improved in the TREOR90 version. ITO and TREOR contain many
options not described in this short presentation, which make them very efficient
for a user who is familiar with all details in the programs. In order to take
advantage of these opportunities, however, the user will need some experience
with the programs.

Given the exhaustive strategy used by DICVOL, one would expect that all
patterns of monoclinic and higher symmetries would be correctly indexed, if the
measurement is of reasonable quality. Unfortunately, however, impurity lines
and/or individual lines strongly affected by overlaps occur frequently. Other
programs sometimes identify such lines via solutions with high M5, values and
one or two unindexed lines, whereas DICVOL will not pinpoint a possible
impurity line. As stated above, however, the number of solutions retained at
each dichotomy level may be a useful error indicator. In the program version
DICVOLO4 (Boultif and Louér 2004) a tolerance to the presence of impurity
lines has been added.

A mistake that is often made is to use more than the first 20-25 lines in the
indexing programs DICVOL and TREOR. It is important to include a// lines
and all systematic extinction conditions in the final least-squares refinement of
the unit-cell dimensions. At that stage, all lines should be carefully checked. The
reason one should avoid using high-angle data in the first trials to find the basic
solution to the indexing problem is that errors, which are much more frequent in
the high-angle region, may completely rule out the possibility of finding a
solution. DICVOL will not accept any unindexed line and TREOR may use
erroneously indexed lines in trial refinements and thus lose correct solutions.
The strategy used by I'TO, however, is probably optimal for about 35 lines.

Powder indexing is only partly a mathematical problem. The chemical and
structural information contained in the pattern is also of importance. The main
reason that indexing programs allow for one or two lines to be discarded if they
cannot be indexed is that impurities are often present. An unindexed line should
be carefully checked from a chemical point of view. If it can be identified as the
strongest line from a chemically possible impurity, the validity of the unit cell
found is strengthened. It may be added that this is a frequently occurring
situation, as can also be seen from the fact that several complete structure
determinations from powder patterns during recent decades have been made
from two-phase samples.

7.8 Computing times

With modern computers, all three indexing programs discussed above are very
fast for orthorhombic and higher symmetries. CPU times for lower symmetries
usually increase in the order: ITO < TREOR90 < DICVOLO91. ITO is very fast
regardless of the symmetry. For TREOR90, computing times may vary from
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less than one second to around thirty seconds on a 1GHz Pentium-4 based PC.
For DICVOL91, CPU times for the monoclinic symmetry can be rather long.
As stated above, if a solution is found by TREOR, the problem should be run
again with stronger restrictions in order to test for better solutions. One may
agree, however, with the statement by Boultif and Louér (1991) that ‘if a
solution is found for the time-consuming examples, time is probably unim-
portant, particularly if an ab initio structure determination follows this geo-
metrical reconstruction of the reciprocal lattice.’

7.9 The PDF 2 database

A search of the 59 847 non-deleted patterns in the PDF 2 database, sets 1-44, to
determine the frequencies of different unit-cell symmetries shows that the group
of unindexed patterns is indeed the largest one (Table 7.3).

In dataset 44, there are 521 unindexed patterns, that is, 26 per cent. The lowest
number of unindexed patterns, is found in dataset 25 (297, i.e. 12 per cent). The
ACA subcommittee’s final report, standard for the publication of powder pat-
terns (Calvert ez al. 1980), comprises an investigation of inaccuracies of d-values
in PDF 2. Tt was found that the average value of |A260| for all 1638 cubic
patternsin sets 1-24 18 0.091°, whereas especially for the cubic patterns published
by NBS, the average of | A268] is 0.015°. Hopefully, data quality has improved
since 1980. Although examples can be given of non-indexed powder patterns in
PDF 2 that can be indexed with reasonable confidence with modern programs
(e.g. PDF no: 37-166 [deleted patterns], 36-21, 36-22, 38-668, 40-66, 43-603,
43-604 and 43-913), there are probably not very many. It seems reasonable,
however, to assume that the main reason for the large number of non-indexed
patterns in the database is to be found in the low quality of the data. This
statement is also strongly supported by the fact that computer indexing of
powder patterns published by NBS is successful almost 100 per cent of the time.
However, impurity lines in these patterns are (probably?) omitted in the editorial
procedure.

Table 7.3 PDF 2, sets 1-44

Symmetry Number %

Cubic 6669 11.1
Rhombohedral 2187 3.7
Tetragonal 5396 9.0
Hexagonal 5540 9.3
Orthorhombic 8510 14.2
Monoclinic 8063 13.5
Triclinic 1666 2.8

Unindexed 21816 36.4
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Table 7.4 Differences in 26 as a
function of change in d-value

dA) A(°26)
3.00—3.01 0.10
2.50 —2.51 0.15
2.00—2.01 0.24
1.800 — 1.801 0.03
(1.7995 — 1.80149) 0.06

Table 7.5 Changes in d-values for
some selected 26 if A(26)=0.03°

26(°) d(A)

9.00—9.03 9.82—-9.78
20.00 — 20.03 4.436 — 4.429
36.00 — 36.03 2.4927 — 2.4909
72.00 — 72.03 1.3105 — 1.3100

For training, the reader can try to find the most likely unit-cell dimensions for
the examples listed above.

If the observed d-values are given with too few decimal places (as in Table 7.4),
it is usually a waste of time to try any indexing procedure (Werner 1976). Even if
a correct solution can sometimes be found by using wide error bounds, the risk
of obtaining false solutions is high. The data in the Tables 7.4 and 7.5 are
calculated on the assumption that the radiation used is Cu Kay.

It is recommended that d>5.00A be reported to 2 decimal places,
500A <d<2.500A to 3 decimal places and d < 2.5000 A to 4 decimal places.

7.10 Comments

The indexing programs discussed above have not been chosen in an objective
way, although they represent three different approaches to the problem. It
should be mentioned, for example, that other programs working in index space
have been written by Taupin (1973), by Kohlbeck and Hoérl (1976, 1978) and by
Smith and Kahara (1975). An indexing program using dichotomy methods has
also been written by Neumann (2003). A special search procedure proposed by
Smith and Kahara for the (020) reflection in monoclinic patterns has also been
implemented in TREOR. Quite recently, Kariuki and co-workers (1999) have
described an approach that involves indexing powder diffraction data by using a
whole-profile fitting technique and a genetic-algorithm-based global-optimiza-
tion method. Altomare and co-workers (2000) have also incorporated the
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TREOR90 program into a more extensive peak search and cell-refinement
framework.

A subroutine named ‘biblio’, containing a large number of useful references
about powder indexing up to 1984, is included in the Fortran source code of the
ITO program, and more recently, Louér (1992) has written a general article
about automatic indexing.

It is not the intention of the present work to recommend or to judge the
efficiency of specific indexing programs. It is strongly recommended, however,
that it is better to have different programs using quite distinct and com-
plementary methods available. A list of indexing programs is given on the
Internet at http://www.ccpl4.ac.uk/solution/indexing/. The CRYSFIRE
program of Shirley, which generates input for the most common indexing
programs, can also be found there. As discussed above, the limitations tend to
affect different programs in different ways. Although deductive and semi-
exhaustive programs may require more experience to take full advantage of all
facilities, it is important in all computerized indexing procedures to know how o
change the error limits in a step-wise manner if indexing is not successful. This is
also strongly related to experience with the actual sample and measuring
system.

Appendix: (Most likely) unit-cell dimensions for selected PDF-2 powder
patterns

PDF 37-166

Cs, V60 (deleted pattern) (see PDF 40454 and 40-456)

Monoclinic: a=8.169A, h=8.508A, c=4.985A, 3=95.52°, V=344.6A°,
Moo= 16, Fp3 = 18(0.021, 63).

A B-centred cell (V=688 A ) can be found. It can be transformed to (an arbi-
trary) primitive cell by MODCELL. The cell can then be reduced and rewritten to
the conventional cell given above by REDUCT. Finally, the dialogue program
PIRUM can be used for refinement. (Several other programs listed by S. Gorter
and D. K. Smith in the World directory of powder diffraction programs. Release
2.12 (1993) can be used. The programs discussed here, as well as a stand-alone
version of N-TREOR, are available from the present author.) PIRUM can be
used for analysis and least-squares refinement of all examples reported below.

PDF 36-21

NaAl(HPO,),

Monoclinic: a=7.820A, b=9.427 A, c=8.427 A, 3=108.83°, V'=587.9A>
Moy=22 (C-centred cell), F39=31(0.017, 58)

PDF 36-22
NaGaH5(AsO4)3 HzO
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Orthorhombic: a=15.968 A, b=14.008 A, c =4.6632 A, V=1043 A’
Moy =172, Fso=163(0.004, 31)

PDF 38-668
B32M05017

Monoclinic: = 14.690 A, b =7.564 A, ¢=6.958 A, 3=100.39°, "' =760.5 A*
My, =23, Fry—43(0.011, 52)

Figures of merit are dependent on the number of lines used in the refinement.
The cell parameter values change gradually with the number of lines (up to 66)
included in the refinement. The pattern has a curved 6 scale. The line at
d=3.4500 A can be identified as an impurity line. On the PDF-card it is
reported that MoOj; was used for the synthesis and has its strongest line at this
d-value (see PDF 21-569).

PDF 40-66
Mg(H,POy), . . . .
Monoclinic: a=7.381 A, b=15.237TA, ¢c=5.313 A, 3=97.84°, ¥ =591.9 A"
Mo =13 (0kO = 2n), F>; = 18 (0.021, 56)

PDF 43-603

EuZO(CO3)2 . H20 N N N N
Orthorhombic: a=8.454 A, b=7.097 A, ¢ =4.8969 A, ' =293.8 A*
Moo =30, F30=34(0.014, 63)

Note: afc =1.7267, see PDF 43-604 (geometrical ambiguity?)

PDF 43-604
Gd,0(CO5), HO ) )

Hexagonal: a=9.744 A, c=7.063 A, V=580.8 A°

Moy =29, Fyo—28(0.022, 49)

A possible geometrical ambiguity.

Orthorhombic: a=7.070 A, b=8.435A, c = 4.878 A, =290 A*
M,y =53 Note blc = /3 (see PDF 43-603)

PDF 43-913

Bi»NisgSsg . . . .
Orthorhombic: a=11.394A, b=7.813A, c=6.351 A, V=1565A3
Moy=17, F7=20(0.017, 81)
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Extracting integrated intensities from powder
diffraction patterns

William I. F. David and Devinderjit S. Sivia

8.1 Introduction

This chapter deals with the theoretical aspects of extracting integrated inten-
sities from a powder diffraction pattern and with the ancillary issue of space
group determination. Extracting integrated intensities is a relatively straight-
forward stage in the structure solution process. Two principal techniques have
been developed. The first of these, the iterative Le Bail method (Le Bail ez al.
1988) based upon Rietveld’s original method (Rietveld 1969) for determining
observed structure-factor magnitudes, is discussed in Section 8.2. The second
method originally proposed by Pawley (1981) is a constrained linear least-
squares approach and is outlined in Section 8.3. A comprehensive review of the
origins of whole powder pattern decomposition methods and their application
to structure solution has been undertaken by Le Bail (2005).

Although extracting integrated intensities is, in principle, not difficult, it is
this stage in the structure solution process that highlights most clearly the loss of
information in a powder diffraction measurement. This loss comes from the
inevitable overlap of Bragg reflections resulting from the collapse of the three
dimensions of reciprocal space onto the single dimension of a powder dif-
fraction pattern. Overlap may be exact because of the equivalence of reflection
d-spacings or accidental resulting from near-equivalent d-spacings that are
separated from one another by an amount less than the resolving power of the
instrument. Exact overlap occurs in crystal systems with higher than ortho-
rhombic symmetry; typical examples include the 43/ and 50/ reflections in the
tetragonal system, the 70/ and 53/ reflections in the trigonal or hexagonal sys-
tems, and the 333 and 511 reflections in the cubic system. Accidental overlap can
occur in high-symmetry systems, but mainly occurs in orthorhombic or lower
systems because of the increased number of independent reflections. The excel-
lent resolution available at modern X-ray synchrotron and neutron powder
diffractometers can result in up to several hundred resolved Bragg peaks.
However, as sin 8/ is increased, accidental overlap must occur and this limits
the complexity of problems that may be tackled. Although Bragg peak overlap
is inevitable in a powder diffraction experiment, several theoretical and
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experimental methods have been put forward to overcome this difficulty.
Theoretical approaches are discussed later in this chapter in Section §.5. Two
successful experimental methods for overcoming Bragg peak overlap are
described in Chapter 9.

How severe is the problem of Bragg peak overlap? Consider a reciprocal
lattice with volume, V* =1/V. The number, N, of Bragg reflections is simply the
number of reciprocal lattice points with d* =(1/d) less than a maximum reci-
procal distance d},, and is given by N =37d3 /V*. Clearly, in a powder
diffraction pattern, all reflections with the same d-spacing are overlapped and
so the number of reflections, assuming that Friedel’s law is obeyed, between
d* and d*+ Ad* is given by the number in the corresponding shell in reci-
procal space, AN(d*)=2xVd**Ad*. This formula presumes triclinic sym-
metry but is also approximately valid for monoclinic and orthorhombic
symmetries if V' is considered to be the volume of the asymmetric unit.
Multiplication by the appropriate Jacobian leads to a number density as a
function of 26 given by

72V sin 0 sin 20

AN(20) = =

A(20). (8.1)

This formula highlights the overlap problem for the solution of moderately
large crystal structures. The number of peaks scales linearly with the unit-cell
volume and varies inversely with ¢ for long d >)).

It can be seen from Fig. 8.1 that there is a clear maximum in the peak
density. The precise theoretical position of this maximum occurs at
20 = 2tan'(1/2) = 109.47° and can be calculated by differentiating eqn (8.1)

T T T
8 CuKo
&
T 40 - -
)
g
S,
hol _ CoKa
- - ~
L -’
< N
e
§20 L 4 N -
g ’ N
© ’
£ , \
2 .7 \\
<‘: /// \\
0 - I I I
0 50 100 150

200

Fig. 8.1. The average number density of peaks as a function of 26° for copper radiation
(solid line) and cobalt radiation (dashed line) for a unit cell of volume 1000 A>.
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with respect to 20. The maximum peak density is then found to be equal to

4V 0169V
(135V3)\F A 7

Sheldrick’s rule (http://shelx.uni-ac.gwdg.de/SHELX) states that, for routine
structure solution by Direct methods, diffraction data should be collected down
to around 1 A. For standard laboratory data (A=1.54 A), d-spacings of 1A
occur at 100° near the maximum peak density. The number of peaks in a one-
degree range at d=1 A is then approximately equal to

V

AN = 20" (8.3)
Peak separations, A20, for low-symmetry systems are essentially random
and thus follow an exponential probability distribution, p(A28 < §) =1—
exp(—ANG§). Assuming no sample broadening and a best full width at half
maximum (FWHM) resolution of 0.06° implies that over 60 per cent of the
peaks are within one FWHM of another Bragg peak for an asymmetric unit
volume of only 360 A%, For organic structures, this signals problems for modest
molecules containing as few as 20 non-hydrogen atoms. This overlap problem
may be to some extent resolved by using longer wavelengths such as cobalt
radiation (see Fig. 8.1) although sample-broadening effects may diminish this
potential improvement. Of course, the best resolutions are achieved at syn-
chrotron sources (see Chapter 4). Take, for example, BM16 at the European
Synchrotron Radiation Facility (ESRF). However, even with A=0.8 A and
a FWHM of 0.01°, the limiting volume of the asymmetric unit only doubles
to around 800 A%, Although giving access to molecules with up to 40 non-
hydrogen atoms, this is still a rather modest volume for organic structures.

A]Vmax (20) - (82)

8.2 The Le Bail method

8.2.1 The origins of the Le Bail method

The origins of the Le Bail method are to be found in the early pioneering work
of Rietveld (1969). Rietveld proposed a simple yet elegant summation approach
to the evaluation of an observed structure-factor magnitude for partially
and indeed completely overlapped reflections. It is worth considering in detail
Rietveld’s summation method with a simple two-peak example. Figure §.2
shows a portion of a diffraction pattern with two overlapping peaks.

The calculated diffraction pattern is good but not excellent and it is clear that
the observed and calculated structure-factor magnitudes are different from one
another. In this example, the observed value for the first reflection is sig-
nificantly larger than the calculated value; the observed value for the second
reflection is slightly smaller than has been calculated. Rietveld’s approach was
simple. The peak area is proportional to the square of the structure-factor
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Fig. 8.2. A Rietveld fit for two overlapping peaks. The observed data are shown as circles
while the fitted pattern and solid lines represent individual calculated peaks.
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Fig. 8.3. The individual peaks contributions (solid lines) towards the observed peak area
as calculated by the method originally proposed by Rietveld (1969).

magnitude and the problem thus reduces to finding the peak area. For an iso-
lated peak, the observed peak area is easy to evaluate. All that needs to be done
is to add together the background-subtracted profile points. For overlapping
peaks, the contribution for a given reflection is weighted by the calculated peak
contribution for that reflection divided by the sum of the calculated peak values
for each contributing reflection. This is illustrated for the two-peak example in
Fig. 8.3.
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The ‘observed’ integrated intensities for the two reflections are given by the
following formulae:

B Aq(cale) x q1(i) obs(i) — back(i
Ar(obs) = Z (A1(calc) x q1(i) + Aa(calc) x q2(i)) (0bs(i) — back(i)),  (84)

i

B Az(cale) x q(i) obs(i) — back(i
Ax(0bs) = Z (A1(calc) x q1(i) + Aa(calc) x q2(i)) (0bs(i) — back(),  (8.5)

where A; = jk|Fk|2 are the integrated intensities, (jz and |Fy| are the reflection

multiplicity and structure-factor magnitude respectively), (i) = c (i) H(i) is

the product of c¢i(i) (which contains Lorentz-polarization, absorption and

extinction terms) and H(7), the normalized kth peak shape, and 0bs(i) — back(i)

is the observed peak contribution at the ith point in the diffraction pattern.
Combining eqns (8.4) and (8.5) gives

A1(0bs) + Az(obs) = > (obs(i) — back(i)), (8.6)

i

which indicates that the sum of the observed peak areas evaluated by Rietveld’s
algorithm is always equal to the background-subtracted area of the observed
Bragg peaks in the powder diffraction pattern. This has been the standard
approach for thirty years for extracting estimates of structure-factor magni-
tudes and has been successfully applied to numerous problems.

8.2.2 The iterative Le Bail algorithm

Le Bail ez al. (1988) noted that the Rietveld approach to obtaining estimates of
structure-factor magnitudes could be extended to the situation where there is no
initial structural model. If the structure is unknown and, as a result, no calculated
structure factors can be generated, then the simplest thing to presume is that all
the integrated intensities are initially equal.' The particular initial value does not
matter as the sum rule expressed in eqn (8.6) ensures that the observed integrated
intensities are correctly scaled. Clearly, after one iteration, isolated peaks will
have an observed intensity equal to the observed area under the Bragg peak. For
overlapping reflections, the procedure has to be tackled iteratively. The Le Bail
method is, thus, a recursive version of the original Rietveld approach to observed
structure-factor magnitude evaluation where the observed peak areas for the
rth iteration are used as the calculated peak areas for the (r+ 1)th

! Strictly speaking, without prior knowledge of the crystal structure, the expectation values of the
peak areas of neighbouring Bragg reflections are the same and not the structure-factor magnitudes
(Bricogne 1991).
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iteration. Generalizing to N-peak overlap, this may be written mathematically as

(r ;
Aﬁf”(ob - A (0bs) X (i) (0bs(i) — back(i)), (8.7)
’ Z (fo:l Ay (obs) x qn(i)) ]

where 47"V (obs) =1 ¥n=1,...,N.
Applying this recursive algorithm to the two-peak example shown in Fig. 8.2
rapidly leads to good estimates of the Bragg peak areas. Figure 8.4(a) shows the
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Fig. 8.4. The individual peak intensities for the two overlapping peaks shown in Figs 8.2
and 8.3 evaluated iteration by iteration by the Le Bail method, (a) with initial values of
1 for both peaks and (b) with different initial values of (500, 500) (solid line), (100, 900)
(dashed line) and (900, 100) (dot—dash line).
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rapid convergence of the Le Bail method in a few iterations despite the initial
assumption of unit-peak area. Indeed, Fig. 8.4(b) illustrates that the Le Bail
algorithm in this well-conditioned example is robust with respect to the initial
starting values of the Bragg peak areas. In only five iterations, the Le Bail
algorithm has lost all memory of the initial starting values. This robustness is
valuable since it implies that the integrated intensity estimates derived from the
Le Bail method may generally be treated with confidence.

As a corollary, however, it highlights the difficulty of using the recursive
Le Bail method for incorporating prior knowledge about structure-factor
magnitudes by using these values as the starting point for the iterative process.
Figure 8.4(b) shows that for differing starting points, very different values are
obtained for first, second and third iterations. Since there is no statistical pre-
ference for any particular iteration, it is difficult to know which iteration to
select and so the Le Bail method cannot be considered to be a robust method for
incorporating prior structure-factor-magnitude information. Nevertheless,
some authors have used this approach to some advantage (Altomare er al.
1996)—see also Chapter 11.

Although the Le Bail method is generally robust and converges relatively
rapidly, there are occasional instabilities. Figure 8.5(a)illustrates such a situation.

The two peaks are in the same positions and have the same widths as those
in Fig. 8.2 but are ten times weaker. Furthermore, the background has been
slightly overestimated. For weak peaks, this is not an uncommon occurrence.
The Le Bail estimates, iteration by iteration, are shown in Fig. 8.5(b) and are
chaotically oscillatory with the appearance of negative intensities upon occa-
sion. Mathematically, this occurs because the overestimated background leads
to both positive and negative contributions (and, as a consequence, occasionally
contributions that are very small) to the denominator in eqn (8.7). In general,
however, with strong peaks and correctly determined backgrounds this does not
occur, and the Le Bail method offers a pragmatic and successful approach to
extracting integrated intensities from a powder diffraction pattern.

Perhaps, the single most important aspect concerning the popularity of the
Le Bail method is its ease of incorporation into standard Rietveld codes since it
is an iterative adaptation of Rietveld’s original method for estimating observed
structure-factor magnitudes. Most main Rietveld codes include this small
modification, which has in turn ensured the wide use of the Le Bail method.
Although the estimated standard deviations of observed intensities are not
normally included as part of the standard Le Bail approach, they may never-
theless be evaluated. Indeed, the fully correlated integrated intensities weight
matrix (the inverse of the integrated intensities covariance matrix) may be easily
evaluated in exactly the same way as in the least-squares Pawley method (see
Section 8.3.2). Access to this matrix allows rapid calculation of the powder
diffraction pattern for structure solution based upon integrated intensities
extracted by the Le Bail method. This approach has been used successfully by
Pagola ez al. (2000).
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Fig. 8.5. (a) Two weak overlapping peaks. The observed data are represented as circles
with lines representing the estimated standard deviations. The background (dashed line)
has been slightly over estimated. (b) The Le Bail estimates of the two peak areas shown in
Fig. 8.4(a) show wild, chaotic behaviour iteration by iteration.

8.3 The Pawley method

8.3.1 Introduction

Pawley (1981) published a method for determining Bragg peak intensities from
powder diffraction data in the absence of a structural model. The principle
behind the Pawley method is quite simple. The Rietveld method involves
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the least-squares analysis of a powder diffraction pattern where the variables are
(a) peak position parameters (cell parameters and zero-point), (b) peak-shape
parameters and (c) parameters dependent on the peak area (i.e. atomic coor-
dinates, anisotropic displacement parameters, absorption and extinction para-
meters). The Pawley method is also a least-squares analysis of a powder
diffraction pattern but while the variables associated with peak positions and
widths are the same, the variables associated with the peak areas are simply the
peak areas themselves. Thus, no structural model is required. Despite the fact
that the statistical basis of the Pawley method is far more robust than the
Le Bail iterative method and, although the Pawley method was introduced
some six years earlier than its counterpart, the Le Bail method is currently still
the more popular approach. There are two reasons for this—availability of
code and perceived weaknesses in the Pawley method. These are addressed in
the following section.

8.3.2 Mathematical background

The mathematical description of the model value for a point in a powder
diffraction pattern may be written as

M(i) = back(i) + Y _ Arqi(i), (8.8)
kY,

where the summation is over all peaks that contribute to the ith point in the
pattern and the symbols are the same as in Section 8.2.

In the Rietveld method, explicit functional forms and derivatives for the
structure factors with respect to structural parameters must then be evaluated.
For the Pawley method, the structure-factor magnitudes may be evaluated
simply by minimizing the summed weighted difference between observed (y(7))
and model (M(7)) diffraction patterns:

=7

N
V=3 () — M) (89)

The derivatives with respect to 4; = ji|Fx|* are easy to evaluate and when set to
zero give the best-fit criterion with respect to peak areas.

ox? 1 . . .
@:*2;7,2%@ y(z%%qh(z)flh —0. (8.10)

Obtaining peak areas is a linear least-squares problem and may be achieved by a
single matrix inversion:

Ax = (Hy) ' By, (8.11)
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Fig. 8.6. A linear least-squares Pawley fit (solid line) for the two overlapping peaks
illustrated also in Figs 8.2 and 8.3. The dashed lines show the individual peak shapes.

where

N

N
Ziz (i) and Bh:Z%qh(i)y(i). (8.12)

i=1

All the important statistical quantities are immediately available. The inte-
grated-intensities covariance matrix, for example, is given by Cj = (Hje) '.2
Indeed, instead of being an iterative approach, the Pawley method solves the
integrated intensity extraction problem in a single matrix inversion. When peak-
shape parameters and lattice constants are known, the integrated intensities are
obtained in a single least-squares cycle. In the two-peak example discussed in
the previous section, this linear least-squares approach returns peak intensities
of 897 £3 and 499 + 1 (see Fig. 8.6). The —3 per cent correlation between the
two peak areas is very small indicating that the peaks are essentially indepen-
dent of one another (David 1999).

The simplicity of the mathematics associated with the Pawley method, how-
ever, belies a number of practical problems. Perhaps the most straightforward of
these is that the algebra outlined above necessitates more substantial mod-
ifications to existing Rietveld codes than the Le Bail method. As a consequence,
there are fewer generally used computer programs based upon the Pawley
approach. More significantly, the matrix Hy; is large (order = the number of

2 A discussion of the use of integrated intensities for structure solution is given in Chapter 15.
Note that a large matrix inversion is required to obtain the integrated-intensities covariance matrix
irrespective of whether the Le Bail or Pawley methods are being used.
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reflections) and usually degenerate. The size of the matrix is not a serious
problem because the matrix itself is highly sparse (all the non-zero terms are
close to the matrix diagonal as they can only arise from overlapping peaks) and
thus, can be easily inverted in block diagonal form. From a practical point of
view, however, most Pawley programs do not invoke sparse matrix inversion
and thus, are limited to a few hundred reflections which, though small compared
with the number of reflections in many powder diffraction patterns, are suffi-
cient for structure solution.

The degenerate nature of the matrix again, in principle, is easy to overcome
but has, in practice, proved to be more difficult to handle. Degeneracy occurs
when two rows (or columns since the matrix is symmetrical) are identical to one
another and happens when two or more peaks are almost exactly overlapping.
This can be avoided by grouping together reflections that are closer than a
particular criterion such as a quarter of a FWHM. Experience with our own
algorithms suggests that a better criterion is a proportion of the step size in the
powder diffraction pattern. It might reasonably be considered that peaks that lie
less than one step size apart when treated separately lead to ill-conditioning on
matrix inversion. Experience, however, has shown that stable inversions are
obtained when peak separations are as little as 0.5 step sizes (corresponding to
less than 0.1 FWHM) apart. Other authors have found a two-stage approach to
be successful (Jansen et al. 1992a).

Although stable refinements are achieved, close peak separation often leads
to the appearance of highly negative intensities, which have generally been
considered to be problematical by the powder diffraction community. How, for
example, can one take the square root of a negative number to obtain a
meaningful structure-factor magnitude? Various approaches have been elab-
orated to deal with this problem. Pawley, in his original implementation of his
program, introduced Waser-type constraints (Waser 1963) to minimize the dif-
ferences between neighbouring integrated intensities. This ingenious approach
can eliminate negative intensities but does increase the number of iterations and
can lead to instabilities. Other authors (Sivia and David 1994; Engel et al. 1999;
Coelho 2000) have enforced positivity by refining not on the integrated inten-
sities but on the structure-factor magnitudes themselves. The least-squares
process is no longer linear and thus, convergence is slower and can take many
iterations to complete.

Sivia and David (1994) proposed another method based upon probability
theory that enforced positivity through a Bayesian prior probability approach.
The procedure is rapid, robust and reliable and leads to all positive intensities
that can be used successfully for structure solution (Shankland ez al. 1997). The
method is illustrated by a two-peak example taken from the paper of Sivia and
David (1994). The results of a Pawley refinement are shown graphically as a
probability distribution function in Fig. 8.7(a). The contours represent the
results of the Pawley refinement that give refined values of —54+25 and 14+ 11
for the two peak intensities.
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Fig. 8.7. The probability distribution function derived from a Pawley refinement for two
strongly overlapping peaks shown (a) as a function of [F|* and (b) as a function of | F]|.
The grey contours represent the combined information from the Pawley refinement and
enforcement of positivity. The dotted contours in (b) are the best-fit multivariate
Gaussian distribution to the probability distribution function.
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The peaks are extremely close together and this is reflected in the high
negative statistical correlation of —97 per cent between the two peaks. The
appearance of a negative intensity is usually taken to be problematical.
Figure 8.7(a), however, illustrates that the refined negative intensity only indi-
cates the top of the probability distribution. There is significant probability that
both peaks are positive. The Bayesian approach incorporates precisely this prior
assumption—namely that the peaks must be positive. The only acceptable part
of the probability distribution is then, the grey-shaded area in the positive
quadrant of Fig. 8.7(a). This truncated probability distribution is now highly
non-Gaussian. However, transforming to |F| space (which is allowed as only the
positive quadrant has a finite probability) results in a banana-shaped dis-
tribution shown in Fig. 8.7(b) that is more closely Gaussian and can indeed be
approximated by a multivariate Gaussian distribution (dotted contours in
Fig. 8.7(b)). This transformation is stable and rapid and yields |F| values of
3.2+ 1.8 and 2.8 +0.9 with a correlation of —87 per cent. At first sight it is
rather unexpected to find that the first |F| value is larger than the second as the
average |F|* value for the first peak was negative. However, the large estimated
standard deviation of the first peak implies a high probability of relatively large
structure-factor values which propagate through to the final |F| result. After
structure solution, the calculated |F| values for the two peaks were 3.1 and 2.6,
which provides satisfactory evidence of the efficacy of the Bayesian approach.

This section would not, however, be complete without a final caveat for all
integrated intensity extraction methods. When the Bragg peak overlap is so
substantial at high angle that no clear Bragg peak-shapes are visible against the
background, all methods must be considered unreliable. Unlike the Rietveld
method, where the crystal structure constrains the size of the Bragg peaks, the
ability to discriminate between peak and background disappears. Although this
can be accommodated mathematically using the full covariance matrix that
includes both peak intensities and background coefficients, there is little
information content in these reflections and they are best left unused for
structure solution.

8.4 Space group determination

Traditionally, space group determination from powder diffraction data is per-
formed manually by inspection of the systematically absent reflections. In
monoclinic symmetry, for example, it is usually relatively easy to distinguish
between the small number of space group options. Strictly speaking, exam-
ination of the space group absences in a powder diffraction pattern only indi-
cates the extinction symbol (Vos and Buerger 1993) often leaving a small
ambiguity about the precise space group. For example, the extinction symbol
associated with the space group, P 2, (b-axis unique), is P - 21 - which is shared
with space group P 2,/m (b-axis unique). In other words, both space groups
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share the same systematic absences which are k=2n+ 1 for 0k0. On the other
hand, the extinction symbol, P - 2;/c -, is unique to the common space group,
P 2,/c (b-axis unique); the absences 0k0, k=2n+ 1 and 40/, [=2n+ 1 uniquely
determine that space group. Although it is, in principle, possible to distinguish
between different space groups that possess the same extinction symbol by
evaluating intensity statistics, it is a much more difficult task than the equivalent
process with single crystal data. This is because the substantial degree of Bragg
peak overlap in a powder diffraction pattern generally makes the differences
between centric and acentric reflection distributions effectively impossible to
detect.

Bragg peak overlap can clearly cause difficulties with determining absences.
For low Miller indices associated with long d-spacing reflections, the problem
is rarely severe even for low-resolution laboratory powder diffraction data.
However, for higher Miller indices (typically 5 and above) reflections that may
be absent often overlap with reflections that are present for all space groups.
This means that the manual decision about a particular space group is often
made on the basis of a small number of low-index reflections; most of the
information in the diffraction pattern is rejected in the visual determination of a
space group. One obvious way forward is to profile fit the diffraction data using
either the Le Bail or Pawley methods. These give a stronger indication of the
presence or absence of a Bragg peak. Full use of the integrated-intensities
covariance matrix gives the best evidence for the presence or absence of a peak.
The profile R-factor or integrated intensities chi-squared value gives a global
measure of the goodness of fit to a powder diffraction pattern and can be used as
a test for space group discrimination. In particular, if a space group predicts an
absence where there is a strong Bragg peak, then the various goodness-of-fit
quantities will be substantially poorer than for space groups where the peak is
allowed. This profile refinement method does indeed reduce the space group
choice, but still leads to a large number of possible space groups. This is because
all space groups with extinction conditions that are a subset of the conditions
for the correct space group will fit with equal or better goodness-of-fit values. In
the example of dopamine hydrobromide, which is discussed below, all the
profile refinements with extinction symbols above P - - - fit as well or better
than the refinement with the correct symbol P b ¢ - (see Table 8.1). One needs to
bias towards more restrictive models that involve more stringent extinction
conditions. Markvardsen er al. (2001) have recently developed such an
approach, based upon Bayesian probability theory, that quantifies the penalty
costs for relaxing extinction conditions.

In the case of space group determination, Bayesian probability theory goes
beyond the question of “‘How well are the data fitted given a particular extinc-
tion symbol? to address the more appropriate question of “Which is the most
probable extinction symbol given the data that have been collected?’. The first
question turns out to be half the answer. Additionally, one has to construct
prior probability distributions for reflections that are conditional on whether
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Table 8.1 Extinction symbol probabilities for dopamine hydrobromide. The prob-
abilities are expressed as a ratio of the log(probability) of the extinction symbol to the
log(probability) of P - - -. The diffraction pattern used to determine the space group of
dopamine hydrobromide was collected on Station BM16 at the ESRF, from a 1 mm
capillary using an incident wavelength of 0.6528 A

Symbol Probability — hkI  OkI  hOl  hkO  hOO  0kO 00/
Phe- 97.98 k I k I
Pbh-- 50.34 k k

P-c- 43.96 I I
P-2,2 21.17 k I
P-2, - 15.21 k

P--2, 5.96 I
P--- 0

Pbch —388.55 k I k k I
P-ch —423.68 I k k

Pb-b —436.18 k k k

P--b —471.32 k k

the reflection is present or absent. The probability of a space group absence is
simply a delta function (i.e. the assumption is made that the peak intensity is
precisely zero) whereas a presence follows a Wilson-type intensity distribution.
Combining these prior probabilities with the quality of fit to the data makes
simpler models with fewer reflections present more probable in a quantifi-
able way.

Table 8.1 illustrates this for the case of dopamine hydrobromide. Of the
top six possibilities shown, it is clear that P b ¢ - is much more probable, given
the data, than the next choice P b - -, which is in turn much more probable than
P - ¢ -, etc. As stated previously, it is not surprising that the second-to-sixth-
ranked choices are more probable than P - - -, since all contain subsets of the
reflection conditions for the most probable choice P b ¢ -. Similarly, those that
are less probable than P - - -, all contain additional conditions that are not met
by the data. Indeed for face-centred extinction symbols, the probabilities range
from — 94800 (F - - -) to — 111200 (F d d d) which may all be considered to be
extremely remote.

A more difficult case of space group determination is provided by the example
of 1,4-dimethanol benzene (P. W. Stephens, personal communication). The
crystal structure is monoclinic with lattice constants a=9.844 A, b=15.484 A,
¢=4.845A and 8=101.20°. From visual inspection of the systematic absences,
it was not possible to distinguish between the space group extinction symbols
P12y/al, P12;/n1 and P 1 2;/c 1. The Bayesian approach confirms this
difficulty in space group determination since all three options are significantly
more probable than P 1 - 1 (see Table 8.2).
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Table 8.2 Extinction symbol probabilities for 1,4-dimethanol
benzene. The probabilities are expressed as a ratio of the log(prob-
ability) of the extinction symbol to the log(probability) of P 1 - 1.
The diffraction pattern used to determine the space group of 1,4-
dimethanol benzene was collected on beamline X3B1 at the NSLS,
Brookhaven using an incident wavelength of 1.149896 A

Symbol Probability hil hol 0%0
P12ynl 25.36 h+1 k
Plnl 19.53 h+1
P12al 18.04 h k
P12y/cl 17.82 [ k
Plal 12.02 h

Plcl 11.98 [

P1241 6.02 k
P1-1 0

I1-1 —1760.87 h+k+1 h+1 k
Ilal —1768.75 h+k+1 hl k
Alnl —3398.06 k+1 hl k
Al-1 —3407.11 k+1 [ k
Ccl-1 —4682.25 h+k h k
Clcel —4707.09 h+k hl k

The order of probability in Table 8.2 does, however, make space group P 21/n
more likely than either space groups P 2;/a or P 2;/c. This assignment is con-
firmed by structure solution since only space group P 2;/n yields an acceptable
structure. The discrimination between space groups involves not only the
identification of single absent or present reflections, but also the evaluation of
presences and absences within a group of reflections. While this is difficult by
eye, the Pawley extraction of peak intensities and their correlations leads to a
quantifiable assignment of peak absence/presence even in cases of substantial
overlap.

8.5 Overcoming Bragg peak overlap

Although it is clearly impossible simply from profile refinement methods to
determine the intensities of completely overlapping reflections, the use of basic
crystallographic constraints such as positivity and atomicity can provide some
discriminatory power. David (1987, 1990) showed that, by using all the avail-
able Bragg intensity data, information about the separation of overlapped
intensities could be obtained from the non-overlapped reflections. Two strat-
egies were proposed: one involved the use of a maximum-entropy Patterson
map algorithm and the other a modification of Sayre’s (1952) squaring method.
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When high-resolution data are available, the maximum entropy method is
powerful (David 1990), particularly when the Patterson map is used directly.
The Sayre’s squaring method has been substantially developed by the work of
Estermann, Baerlocher and McCusker (1992) and Estermann and Gramlich
(1993) to include an iterative redistribution of intensity statistics. This FIPS
(Fast Iterative Patterson Squaring) method has been successfully used to solve
several zeolite structures from powder data (see Section 12.5).

In order to understand how basic constraints such as positivity and atomicity
can help in the separation of completely overlapping reflections, consider the
Sayre’s squaring method developed by David (1987). Electron density is con-
centrated on atomic sites and is everywhere positive in a crystal structure. The
Patterson map, which is simply the autocorrelation function of the crystal
structure, will have similar attributes. Fig. 8.8(a) shows a one-dimensional
section of a Patterson map.

When this Patterson map is squared (Fig. 8.8(b)) the squared result still bears
a strong resemblance to the original Patterson function. The Fourier transforms
of the Patterson map and its square are given by

an = / P(r)cos(2rh - r)dV = | Ry [, (8.13)
v
Gy = / P(r)cos(2mh - 1)dV = gign k- (8.14)
4 k
Writing the Patterson map as a sum of Gaussian functions leads to
NN-1)
PR =Y exp [—(r - rg)z/zol}, (8.15)
n=1

and

<N(Zl exp[ (r— 1) /2&})2

N(N-1)
Z exp[ (r—rp) /a} (8.16)

n=1
The approximation holds if the overlaps between the peaks in the Patterson
map are small and is a reasonable working assumption. This is because the
Patterson map, though containing N( — 1) peaks, is still relatively sparse and is
dominated by vectors associated with heavy atoms that will generally be well-
separated from one another. Combining eqns (8.13 and 8.14) and (8.15 and

8.16) leads to the relationship

|Ful” o< exp[— 402 /d7] Z el [P i (8.17)
K
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Fig. 8.8. A one-dimensional section of (a) a synthesized Patterson function and (b) its
square.

(b)

For overlapping reflections, the coefficient is a constant as it is only a function
of d-spacing and thus, the fractional integrated-intensity contribution of the
mth of M overlapping reflections is given by

.mF 2 ~m F2F72
Il P w2 [ Pk (8.18)

M . 2= . )
SR B S (S B 1)

New estimates for the overlapped integrated intensities may be obtained
using this equation with the initial presumption that overlapped intensities are
equipartitioned. These new estimates can then be recycled through eqn (8.18) to
provide improved values. This iterative process continues until convergence is
achieved. This approach does provide superior results over equipartitioning.
However, being based upon the approximate assumption that Patterson and
squared Patterson maps look similar in structure, the algorithm is not exact.
Examination of results (David 1987) suggests that the squaring method shifts
the relative intensities in the correct sense but, in the majority of cases, to a
degree often substantially less than the true amount.

Other techniques based upon semi-exhaustive intensity permutations of
overlapped reflections have met with success (Jansen et al. 1992b; Cascarano
et al. 1991). Perhaps the most rigorous development to date, however, is the
theoretical work of Bricogne (1991) who showed that the effects of overlapped
reflections may be treated as an extension of the phase ambiguities of centric
(1 dimension) and acentric (2 dimensions) to a (2n,+ n.)-dimensional space,
where n, and n, are the number of acentric and centric reflections contained
within a completely overlapped group of reflections. The need to phase permute
within a multi-dimensional hyperspace is computationally daunting and yet is
an oversimplification of the problem as due account must also be taken of the
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often high correlation between neighbouring reflections that almost overlap.
This theoretical approach is discussed extensively in Chapter 14.

8.6 Incorporating crystallographic information

In the previous section, it was shown that the simple restrictions of positivity
and atomicity could bring some discriminatory power to the separation of
completely overlapping reflections. Clearly, if a part of the structure is already
known then the estimated values of overlapping integrated intensities can be
better determined. Various groups have developed strategies to incorporate
such fragment information into the extraction of integrated intensities (Jansen
et al. 1992b; Altomare et al. 1996, 1999) and these approaches are discussed
elsewhere in this book (see Sections 10.5 and 11.5). In this section, we continue
to use probability theory in a consistent Bayesian manner to show
that substantial improvements can be made in the separation of integrated
intensities if a part of the structure is already known.

Consider that the initially extracted integrated intensities have been used to
determine, for example, the location of a heavy atom or an aromatic ring
through Patterson methods. Phased structure factors can easily be calculated
for this component of the crystal structure and then used in conjunction with the
diffraction data to constrain further the structure-factor intensities. Take the
case of two centric reflections, k and k', depicted in Fig. 8.9(a) and (b).

The solid contours indicate the goodness of fit obtained with the diffraction
data for various possible combinations of the two structure factors, Fy and Fy,
so that (a) corresponds to two isolated Bragg peaks (with [F|*=94+2 and
|Fir|*=7+2 with no correlation) and (b) depicts the situation for complete
overlap (|Fi|> + |F[?=16+3). The toroidal probability distribution in
Fig. 8.9(b) reflects the fact that only the sum of the integrated intensities (i.e. the
quadratic sum of F; and Fj) is determined well by the measurements. The
dotted contours represent the prediction for the two structure factors based
solely on knowledge of the recognised fragment and the chemical composition
of the full-crystal structure. The best estimate is the peak of this distribution and
is given by the structure factors, Fy (known) and Fys (known), calculated from
the positions of the known atoms, while the uncertainty, o= o, =0y, is gov-
erned by scattering density from the unlocated components. Indeed,

Nunlocated

7 (8.19)

n=1

where £, is the atomic scattering factor for one of the Nypjocateq atoms in the
crystal structure. For this particular example, F; (known)=242 and Fy-
(known) =4+ 2. Observed and model probability distributions are multiplied
together since they form two independent pieces of information. This final



(a)

Y
A ey
y
)

©

(h) F,

Fig. 8.9. The joint probability distribution for two phased structure factors (a) for two
isolated Bragg peaks, and (b) for two completely overlapping Bragg peaks. The solid
contours correspond to the probability distribution associated with the Pawley refine-
ment of the observed data. The dotted contours are associated with the calculated
structure factor, which is centred on the structure factor value of the known fragment
and has a Gaussian blur related to the scattering from unlocated atoms. The grey-scale
represents the combined probability distribution.
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probability is indicated in the figures by the grey-scale shading. In the top
example, although the model constraints are relatively weak, positive phases for
both structure factors are highly preferred although there is still a small prob-
ability that Fj is negative. It is worth pointing out that this approach has not
only confirmed intensities but also indicated probable phase values as well.
Indeed, in general, located fragments contain powerful phase information that
should be used to maximum advantage in structure solution. This is discussed
further in the second half of this section. However, from a practical viewpoint, an
updated estimate of the structure-factor magnitudes is useful as modified input
to traditional Direct methods programs. In principle this process can proceed
iteratively with structure factor estimates improving as the known fragment size
increases until the complete structure is solved. An estimate of the structure-
factor magnitudes can be obtained from the joint probability distribution
shown in Fig. 8.9(a) and (b) by integrating it over regions where either |Fy| or
|Fy/| are constant. The result of such a marginalization is shown in Fig. 8.10(a)
and (b) and gives for case (a) |Fx| =2.97+£0.34 and |F}/| =2.69 £+ 0.36 with no
correlation and for case (b) |Fi|=0.5£8.7 and |F/|=4.0£ 1.2 with a corre-
lation of —94 per cent.

It should be noted that the error-bars quoted for case (b) have to be treated
with caution, as the Gaussian approximation of the probability distribution
upon which they are based is clearly a poor one in this instance. In the analysis
above, both reflections have been presumed to be centric. As a further illus-
tration of how this formal probabilistic analysis automatically makes full use of
all the information that is presented to it, Fig. 8.10(c) shows how the estimate of
the magnitudes of the structure factors would have changed for the case of two
completely overlapping acentric peaks. The optimal estimates would then have
been |Fx|=2.24 1.3 and |F;/| =3.4 £ 0.9 with a correlation of —86 per cent. In
this situation of completely overlapping peaks, irrespective of whether the
reflections are centric or acentric, there is a strong indication that both reflec-
tions have a positive phase and thus direct structure solution from this stage is
possible if a sufficiently large structure fragment is known.

It is clear from the previous discussion in this section that knowledge of the
partial crystal structure can be used to improve the estimates of the intensities of
the reflections, |Fi|* and |Fy|* particularly for strongly overlapped peaks.
However, it was also shown that located atoms give an indication not only
of the amplitude, but also of the phase of each structure factor. Ignoring the
latter is tantamount to throwing away useful, if not vital, information. Indeed,
Fig. 8.10(a) illustrates that for isolated and well-determined Bragg peaks, the
fragment information has little effect on the intensities of the structure factors
but does provide a strong preference for a particular phase assignment. In
practice, this approach can be used successfully for structure completion when
as little as one third of the scattering density in the crystal structure has been
located. This is illustrated by the particular example of chlorothiazide that was
solved by Direct methods (Shankland et al. 1997).
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Fig. 8.10. See next page for caption.
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Fig. 8.10. The final probability distribution illustrated in Fig. 8.9 but represented in this
diagram as a function of |F| (hence only the positive quadrant is shown). This |F|
distribution must be calculated if the known fragment information is to be utilized in
traditional direct methods. (a) The anticipated |F| distribution for the reflections shown
in Fig. 8.9(a)—the reflections are clearly centric. (b) The anticipated |F| distribution
for the reflections shown in Fig. 8.9(b) assuming the reflections are centric, (¢) and as for
(b) but assuming the reflections are acentric.

The molecular structure of chlorothiazide, C;HgN3;04S,Cl, is shown in
Fig. 8.11.

The crystal structure is triclinic (space group PI) with lattice constants
a=6372A,b=8916A, c=4.855A, 0 =96.13°, 3=99.48°, v =T4.41° (Z=1).
The three heavy atoms (2S 4 CI) constitute one third of the scattering density of
the structure and are easily located using Patterson methods. The integrated
intensities were extracted from the powder diffraction pattern using the Pawley
method with due account taken of Bragg peak overlap by retaining the weight
matrix, Hy, given in eqn (8.12). The missing structure was then taken as an
additional unknown contribution to the heavy-atom structure that was assumed
to be known exactly. Mathematically, this corresponds to minimizing the
correlated integrated intensity differences between the observed structure-
factor magnitude squared, |F,ps|* and the magnitude squared of the sum of
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Fig. 8.11. The molecular structure of chlorothiazide, C;HzN3;0,4S,ClL.

known + difference |Fypown + AF |2, while enforcing positivity in the difference
Fourier map. The quantity

xer = 20 | IFoos ) = | Funoun () + AF(H)F |
h k

% (Cal) [IFons () = | Fnown () + AF(K)P (8.20)

is minimized (where AF(h) = 3" Ap(r) exp(—2xih - r) is the Fourier transform
of the electron density, Ap(r)) while the entropic term >, Ap(r) In(Ap(r)) is
simultaneously maximized. In this way, the observed integrated-intensities
constraint is rigorously obeyed, the phase information from the heavy atoms is
used and no constraints are imposed on the phases of unknown difference
Fourier components. In the case of chlorothiazide, all non-hydrogen atoms
were unambiguously located in the maximum entropy Fourier map (see
Figs 8.12 and 8.13) implying that up to two-thirds of a crystal structure may be
reconstructed using this approach. Many of the correct features associated with
the unlocated atoms are visible in the standard Fourier map. However, the
standard Fourier map also contains false features of a similar magnitude to the
correct features making atom location a task that involves a substantial amount
of chemical intuition. In the maximum entropy Fourier map, the correct atomic
features are easily discriminated from the surrounding low background density.
In conclusion, it is clear from this example that the correct treatment of overlap
and correlations between integrated intensities combined with the active use of
fragment information can be a powerful tool for complete structure solution
from powder diffraction data.
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Fig. 8.12. Two-dimensional section of the scattering density for chlorothiazide (a)
calculated using the full crystal structure, (b) calculated using only the heavy atom (two
sulphur and one chlorine) sub-structure, (c) synthesized from a maximum entropy map
based upon fitting the correlated integrated intensities, with due account taken of the
structure factors associated with the heavy atoms and the structure factor blur
corresponding to the unlocated atoms, and (d) taken from a standard powder diffraction
Fourier map derived from the observed structure factors (assuming the heavy atom
model) obtained by applying Rietveld’s original method. Note that two heavy atoms
(c.f. (b)) are visible in this section.

Fig. 8.13. A second, different two-dimensional section of the scattering density for
chlorothiazide taken from the same maps as those shown in Fig. 8.12. Note that despite
the fact that no heavy atoms are to be found in this section, the Bayesian approach
(c) reveals all the other atoms, whereas the standard map (d) is ambiguous.

8.7 Conclusions

Well-developed computer programs based upon the Le Bail and Pawley meth-
ods are available for extracting integrated intensities from powder diffraction
data. The challenge that faces this stage in the structure solution process is
obtaining the best structure-factor magnitudes as input to structure-solving
programs. The incorporation of a known partial structure has substantial
benefits and there is significant potential for future algorithms to exploit this
information.
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