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Preface to the Paperback Edition

In the few years that have elapsed since this book first appeared in hardback,
structure determination from powder diffraction data (SDPD) methods have
been refined and accepted into the structural communities as a powerful alter-
native for use when single-crystal diffraction methods are not appropriate. This
is clearly reflected in the number of papers being published that involve the use
of SDPD and it is particularly gratifying to see SDPD-derived structures
appearing regularly in volumes of Act a Crystallogr. B, C, and E, confirming the
truly routine nature of the technique in many instances. This surely also reflects
the fact that instrumental developments, both in laboratories and at synchro-
tron sources, have made measuring very high-quality X-ray powder diffraction
data easier than ever before.

Many of the more recent developments in methods, algorithms and computer
programs are covered in a special issue of Zeitschrift Fur Kristallographie
(volume 219,12,2004) which is dedicated to the subject of SDPD. It is probably
true to say that the majority of developments have been incremental rather than
revolutionary; there has been no step change in the level of structural com-
plexity that can be tackled as a result of the introduction of, for example, novel
optimisation methods, new evaluation functions or the closer coupling of direct
methods/global optimisation. The change in complexity represented by the
study of protein structures using powder diffraction still lies more in the domain
of structure refinement than determination but regardless, it represents an
exciting new research topic.



Preface

The art of solving a structure from powder diffraction data has developed
rapidly over the last ten years. Prior to 1990, very few unknown crystal struc-
tures had been determined directly from powder diffraction data, and each
structure solved could be regarded as a tour de force of ingenuity and perse-
verance. Today, the situation is quite different and numerous crystal structures,
both organic and inorganic, have been solved from powder data. Developments
in instrumentation, computer technology and powder diffraction methodology
have all contributed to this increased success rate. However, the route to a
successful structure determination is still by no means as straightforward and
routine as it is with single-crystal diffraction data.

In the chapters that follow, experts in the field discuss both the fundamental
and applied aspects of structure solution from powder diffraction data. The
process is sequential, with any particular stage depending crucially on the
successful completion of all the previous steps, and the ordering of the chapters
within the book essentially reflects this flow. Although the Rietveld method of
structure refinement from powder diffraction data is often loosely considered to
be synonymous with structure determination, it is not. The Rietveld method
only comes into play in the final stage of the structure solution process when an
approximate structural model has been found. The subject of this book is how
that structural model is determined.

Despite the sequential nature of the structure determination process, there are
nevertheless various paths that can be taken through it. The art of structure
solution from powder diffraction data lies not only in the correct application of
a specific technique or computer program, but also in the selection of the
optimal path for the problem at hand. The limitations inherent to the data
available and to each of the methods used must be recognized. This book is
designed to help the reader find his or her way through the maze of possibilities.

Readers will find that while every effort has been made to ensure that the
chapters present a consistent and coherent approach to structure determination,
no attempt has been made to gloss over differences of opinion, as expressed by
individual authors, regarding the benefits or limitations of particular methods.
This is particularly apparent in the case of the key step of intensity extraction,



PREFACE vii

where the relative merits of the Pawley and Le Bail methods are raised in several
chapters. Such differences are, however, minor and should not overly concern
the reader. Indeed, probably the most significant legacy of the past decade lies in
the diversity of methods that have been developed.

William I. F. David
Kenneth Shankland
Lynne B. McCusker
Christian Baerlocher
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1

Introduction

William I. F. David, Kenneth Shankland, Lynne B. McCusker
and Christian Baerlocher

1.1 Crystal structures from powder diffraction data

Powder diffraction has played a central role in structural physics, chemistry and
materials science over the past twenty years. Important advances in structural
studies of materials ranging from high temperature superconductors and full-
erenes to zeolites and high-pressure research have relied heavily on the powder
diffraction technique. By far the majority of these structures have been analysed
using the Rietveld method (Rietveld 1969), a development which has greatly
enhanced the power of powder diffraction experiments (Young 1993). However,
the Rietveld method is a refinement process and, as such, requires that an
approximation to the correct structure be known in advance. If a structural
model is not available, it must first be determined.

Unfortunately, structure determination from powder diffraction data is much
more difficult than from single crystal data. This is associated almost entirely
with the collapse of the three dimensions of crystallographic information onto
the single dimension of a powder diffraction pattern. The resulting ambiguity
in the data creates particular problems in the determination of the unit cell and
in the application of traditional Direct methods or Patterson techniques.
Indeed, all parts of the structure solution process are less straightforward than
their single-crystal equivalents. Nevertheless, with improvements in instru-
mentation and algorithm developments coupled with greater computing power,
increasingly complex crystal structures are being solved from powder diffrac-
tion data alone. Ironically, for some larger structures, the weak link in the
structure determination chain is becoming the final structure refinement itself. It
can be easier to determine a structure with more than 50 independent atoms
than to provide an accurate and precise refinement of its crystal structure.
Algorithm advances in powder diffraction data have come full circle with
structure determination now providing an impetus for the further development
of the Rietveld method.

Why should powder diffraction be used for structure solution when the
single-crystal approach is much more straightforward? The answer is simple:
there are many materials for which no single crystals are easily available.
If representative single crystals are available, then single crystal diffraction is the
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preferred method. For structures with less than 100 atoms in the asymmetric
unit, single-crystal techniques are almost guaranteed to be successful and the
final refined structure will almost always be more reliable than its powder dif-
fraction equivalent. Indeed, the most recent developments in Direct methods of
structure solution from single-crystal data (Weeks et al. 1994; Burla et al. 2000)
have seen stunning successes, with structures containing up to 2000 atoms now
tractable. If only powder samples are available, there may still be small crys-
tallites that are large enough to be used for microcrystalline diffraction. This
will usually give a higher likelihood of success, particularly for larger crystal
structures, and will enable a more precise and accurate crystal structure to be
obtained. Microcrystals do, however, suffer from the obvious disadvantage that
they may not be representative of the bulk powder. Thus, for such samples, it is
essential to collect a powder diffraction pattern as well to verify that the
structure obtained from the microcrystal corresponds to that of the bulk
material.

With the techniques described in this book, however, it is clear that a powder
diffraction pattern on its own can provide enough structural information to
allow fairly complex structures to be solved. Indeed, even relatively poor dif-
fraction patterns can yield successful structure solutions. This is illustrated in
Fig. 1.1, where the crystal structure of l,4-diethynyl-2,5-bis(octyloxy)benzene
(Fig. 1.1 (a)) has been determined from the rather poor laboratory X-ray dif-
fraction data shown in Fig. l.l(b).

Although most of the structures determined from powder diffraction data
have been solved in the last few years, there are, nevertheless, important
examples that go back to the very earliest days of X-ray crystallography. Many
of these structures are relatively straightforward but, nevertheless, represent
significant tours-de-force for their time. Notable contributions include those of
Zachariasen (1948) and Werner and co-workers in the 1970s (e.g. Berg and
Werner 1977). Zachariasen, in particular, used a number of ingenious methods
to solve crystal structures from powders. His work on /3-plutonium (Zachariasen
and Ellinger 1963), for example, utilized differential thermal expansion to
resolve Bragg peak overlap (see Chapter 9). Many of the early zeolite structures
that were solved from powder diffraction data involved model building
and significant chemical intuition (e.g. zeolite A, Breck et al. 1956; ZSM-5,
Kokotailo et al. 1978), and these concepts are now being implemented in
computer algorithms. More details about the fascinating history of structure
solution from powder data can be found in Chapter 2.

Today, structures of much higher complexity have become accessible to
powder diffractionists. A number of different research groups are now applying
the increasingly powerful techniques to a wide range of problems. Just a few
recent examples are given here to illustrate the diversity and richness of the field.
Conventional single-crystal approaches adapted to cope with the vagaries of
powder diffraction data have been used to solve structures as complicated
as the sulfathiazole polymorph V (32 non-H atoms in the asymmetric
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Fig. 1.1. (a) The molecular formula of l,4-diethynyl-2,5-bis(octyloxy) benzene (b)
Diffraction data collected at 1.5406 A from a sample of l,4-diethynyl-2,5-bis(octyloxy)
benzene using a Stoe X-ray powder diffractometer equipped with a linear position
sensitive detector.

unit; Chan et al. 1999), fluorescein diacetate (31 non-H atoms; Knudsen et al.
1998), and the mineral tinticite with a complex structural disorder (Rius et al.
2000). With better estimates of reflection intensities obtained by collecting
multiple datasets on a textured polycrystalline sample, the power of Direct
methods could even be extended to solve the structure of the zeolite UTD-IF
(117 non-H atoms; Wessels et al. 1999). Heavy atom methods followed by
Fourier recycling have allowed a complex tubular uranyl phenylphosphonate to
be solved from laboratory X-ray data (50 non-H atoms; Poojary and Clearfield
1997; Poojary et al. 1996). Global minimization procedures operating in direct
(model-building) space have been applied successfully to some very large

3
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molecular compounds, including /3-haematin (43 non-H atoms and eight vari-
able torsion angles; Pagola et al. 2000), an organometallic bipyridine polymer
(29 non-H atoms and five variable torsion angles; Dinnebier et al. 2000), and
Ph2P(O) (CH2)7P(O)Ph2 (35 non-H atoms and 12 variable torsion angles;
Kariuki et al. 1999). On the non-molecular side, a zeolite-specific method that
operates in both direct and reciprocal space was used to elucidate the structure
of the zincosilicate VPI-9 (59 non-H atoms; McCusker et al. 1996). These are
just a few examples of the state-of-the-art of structure solution from powder
diffraction data. Many more are given in the following chapters. Indeed, new
ones are appearing in the open literature with increasing frequency.

1.2 The structure determination process

The structure determination process can be viewed as a search for the best way
through amaze (Fig. 1.2). Although there are many paths leading to the centre (i.e.
the final structure), not all are appropriate or even feasible for a given problem.

Fig. 1.2. The structure determination maze.
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It is immediately apparent from Fig. 1.2 that everything depends upon the
sample itself. Even if a material cannot be crystallized in the form of single or
even microcrystals, time invested in producing a high-quality polycrystalline
sample (e.g. high purity and crystallinity) prior to a structural investigation is
time well spent. All subsequent steps in the structure determination process will
depend upon the quality of the data and these in turn depend upon the quality
of the sample.

The first choice in finding a path through the maze is which radiation source
and instrument geometry is best suited to the problem. Are high-resolution data
collected on a laboratory X-ray instrument (Chapter 3) sufficient, or does the
complexity of the problem require the higher resolution or tunability offered by
a synchrotron source (Chapter 4)? Or does the nature of the material make a
neutron experiment (Chapter 5) more appropriate? Of course, once the type of
experiment has been established, the data collection parameters (e.g. step size,
counting times, data range) must be evaluated and optimized for the problem in
hand (Chapter 6).

Whichever path is chosen for the data collection, the first step in data analysis
is the indexing of the diffraction pattern (Chapter 7). While modern indexing
programs work extremely well with good data, the user needs to be aware of the
potential pitfalls. Even with excellent diffraction patterns, conventional auto
indexing programs will sometimes fail to yield the correct unit cell. For example,
the synchrotron diffraction pattern shown in Fig. 1.3 was not indexed correctly,
despite the fact that (a) all of the first 40 reflections were indexed, (b) the average
absolute difference between observed and calculated 20 was only 0.00034°, and
(c) the F4Q figure of merit was 2178 (for a definition of F4Q see Chapter 7).

All but one of these first 40 reflections can in fact be accounted for by a single
plane in reciprocal space with corresponding lattice constants a = 23.4891(4) A,
c = 21.3685(4) A, (3= 116.485(2)°. The length of the b axis (b = 3.7698(2) A) is
determined by a single peak position, and is, unfortunately, completely spur-
ious. It is essential to realise that if the unit cell is wrong, all effort expended in
the subsequent search for the correct structure will be pointless. It is ironic that
progress in our ability to solve larger structures takes us into a region where unit
cells inevitably become larger, thus creating problems at the indexing stage. In
the case shown in Fig. 1.3, it is the combination of two long axes and one very
short axis that creates the problem.

Once the unit cell has been found, the associated space group must be deter-
mined. This is also a critical step, and is often difficult and rarely unambiguous. In
many cases, several space groups will need to be investigated and the possibility of a
further reduction in the symmetry always borne in mind. This is one area of powder
diffraction where subjective judgements remain the norm, though a probabilistic
approach (Markvardsen et al. 2001; Chapter 8) has recently been proposed.

From the unit cell and the selected space group, the positions of the reflections
in the diffraction pattern can be calculated. The diffracted intensity associated
with each reflection can then be determined by applying a whole-profile-fitting



Fig. 1.3. High-resolution X-ray powder diffraction data collected using an incident
wavelength of 0.8266 A on BM16 of the ESRF. The sample is a material of
pharmaceutical interest contained in a 1.0 mm capillary.

technique similar to that used in a Rietveld refinement but with the intensities of
the reflections rather than the structural parameters being the non-profile
variables (Chapter 8). This procedure, known as intensity extraction, can be
performed using either a least-squares method (Pawley 1981) or an iterative
approach (Le Bail et al. 1988). Even if integrated intensities are not used in
subsequent steps, this procedure is still necessary to establish the appropriate
profile parameters for whole-profile applications.

Those reflections that are too close to one another to be considered indepen-
dently (i.e. strongly overlapping reflections) must be recognized and treated in
some way. The simplest approach is to equipartition the total intensity over all
contributing reflections (taking the peak-shape function into consideration), but
several methods for obtaining better estimates of the relative intensities of over-
lapping reflections have been developed and these are strongly recommended
(Chapters 8-11). Keeping track of the correlations between reflection intensities is
also advantageous. Of course, the partitioning step can be bypassed if the whole
profile is to be used in combination with direct-space techniques, but for the
application of Patterson and Direct methods, partitioning cannot be avoided.

The option of collecting multiple datasets to obtain a more reliable parti-
tioning of these reflections and more single-crystal-like intensities (Chapter 9)
might be chosen if the structure under study is complex. Data collected at

6 INTRODUCTION
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different temperatures for a material displaying anisotropic thermal expansion
or at different sample orientations for samples with a preferred orientation of
the crystallites can provide additional information about the relative intensities
of overlapping reflections. Whichever method of partitioning is applied, the
result is a pseudo-single-crystal dataset (i.e. list of hkl and Ihki)-

Only at this point can the actual determination of the structure begin. The
methods currently available can be grouped into three main categories: (a)
adaptations of single-crystal techniques, (b) direct-space methods that exploit
prior chemical knowledge, and (c) hybrids of the two. These are discussed in
more detail in the next three sections.

The final and often most time-consuming step in the structure determination
maze is the completion of the structure (e.g. finding any missing atoms by
Fourier analysis, resolving disorder problems, etc.) and the refinement of the
structural parameters using the Rietveld method (Rietveld 1969; Young 1993).
Only when the refinement has been brought to a successful conclusion can the
structure proposal from the structure determination step be considered to be
confirmed. Throughout the whole procedure, chemical information and intui-
tion play an important role in guiding the user through the maze (Chapter 17).

1.3 Adapting single-crystal structure solution methods to
powder diffraction data

Conventional crystallographic approaches to structure solution such as Direct,
Patterson and maximum-entropy methods have been modified to address
the problems posed by the deficiencies inherent to powder diffraction data
(Giacovazzo 1998). The basic concepts of Direct methods and the difficulties
involved in their application to powder data are outlined in Chapter 10, and
the more practical aspects of their application are discussed in Chapter 11.
Patterson techniques, including maximum entropy Patterson maps and the use
of the symmetry minimum function in structure solution, are discussed in
Chapter 12, and a derivation of how the Direct methods sum function can be
used to solve structures from Patterson syntheses is presented in Chapter 13.
Finally, the adaptation of the maximum entropy approach to structure solution
for the case of powder diffraction data is described in Chapter 14.

In the standard Direct methods approach to crystal structure solution, a
density map of the unit cell is generated using the Fourier transform of a set of
measured structure factor magnitudes and a corresponding set of calculated
phase angles, that is,

Assuming that the structure factors have been collected to atomic resolution
from a single crystal and the calculated phase angles are approximately correct,
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the resultant density map is composed of discrete 'blobs' of electron or nuc-
lear density within the unit cell, corresponding to the atomic positions in
the structure. It is then a straightforward matter to connect these 'blobs', using
the rules of chemical bonding, in order to visualize the crystal structure. If the
complete structure is not elucidated in a single pass, a series of difference
Fourier or fragment recycling calculations will normally reveal the remaining
atoms.

However, it is relatively rare in powder diffraction, particularly when dealing
with organic crystal structures, for good quality diffraction data to be obtained
to atomic resolution. Accordingly, one is typically faced with the prospect of
interpreting low-resolution density maps in ways analogous to those employed
so successfully by protein crystallographers. There is, however, one very
important difference. In the case of protein crystallography, the low-resolution
density maps are generally based upon a large number of well-determined
structure factor magnitudes. Furthermore, the phases are normally derived
from one or more single-crystal experiments involving isomorphous replace-
ment or anomalous dispersion measurements. Compare this with the situation
in powder diffraction, where we typically have a small number of poorly
determined structure factor magnitudes and are restricted to phases derived
from Direct methods probability relationships or from heavy atom positions
gleaned from a Patterson map. It should, therefore, come as no surprise that the
quality of the density maps obtained from a powder diffraction experiment can
be quite poor and their interpretation a non-trivial matter.

Nonetheless, single-crystal methods have been applied quite successfully to
both inorganic and organic structures with up to several tens of atoms in the
asymmetric unit. Continuing developments in Direct methods (Altomare et al.
2000) are likely to push these numbers even higher.

1.4 Direct-space methods that exploit chemical knowledge

Direct-space methods have evolved from traditional model building in which all
available information about the material is used to construct a chemically
feasible structural model. The diffraction pattern calculated from this model is
then compared with the measured one to evaluate the model's viability. As this
approach takes advantage of prior chemical knowledge and not just the dif-
fraction data, it is a very powerful one, but it is time consuming and uncom-
fortably dependent upon the intuition and ingenuity of the model builder.
However, with modern computing power, large numbers of feasible models can
be generated, evaluated and modified automatically once the chemical infor-
mation has been suitably encoded. The encoding is the crucial point.

Naturally, the encoding makes an algorithm specific to a chemical class of
materials, but this class can be as general as organic molecules. In fact, the most
successful algorithms to date have been developed for molecular compounds,
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where the connectivity of the atoms is known. Given the connectivity and
typical bond lengths and angles, it is relatively straightforward to describe the
molecule in terms of internal coordinates (i.e. bond distances, bond angles and
torsion angles). Then, the only variables are the position and orientation of the
molecule as a whole plus any variable torsion angles. Using this information,
thousands or even millions of chemically feasible trial structures can be gen-
erated automatically and their powder patterns calculated. The only problem is
finding the structure corresponding to the best fit between the observed and
calculated diffraction data (i.e. the global minimum).

A number of algorithms, ranging from simple grid searches (Chernyshev and
Schenk 1998) to simulated annealing and genetic algorithms (Kariuki et al.
1997; Shankland et al. 1997; Turner et al. 2000) have been developed. Global
optimization procedures for the solution of molecular structures are described
in Chapter 15, and the specific use of a simulated annealing approach for this
purpose is discussed in Chapter 16.

For inorganic structures, or those where connectivity is not known, other
approaches are needed. In fact, Deem and Newsam (1989) were the first to
introduce the concept of simulated annealing in the context of structure solu-
tion from powder diffraction data, and they did so for zeolite structures, not
molecular compounds. The chemical information they used was the fact that
zeolites and related materials have three-dimensional framework structures
composed of corner-connected tetrahedral units (TO4, where T = Si, Al, P,
etc.). They encoded this information in the form of pseudo-potentials for T-T
distances, T-T-T angles and coordination number (derived from related
structures). The variables were simply the positions of the T-atoms in the unit
cell. These were moved around the asymmetric unit in a search for a global
minimum corresponding to the best fit of the pseudo-potentials and the
observed and calculated diffraction patterns. Falconi and Deem (1999) have
since refined that simulated annealing minimization procedure to include a
parallel tempering algorithm.

Another option for structures in which the connectivity is not known is to
introduce the chemical information in the form of chemical potentials. This
approach has been implemented, for example, in the program ENDEAVOUR
(Putz et al. 1999).

1.5 Hybrid approaches

Approaches that work in both reciprocal and real space have also been devel-
oped. The program FOCUS, for example, uses chemical information about
zeolite framework structures in real space in combination with intensities and
(random) phases in reciprocal space to solve zeolite structures (Chapter 17).
Another combination involves the use of a structure envelope (Brenner
et al. 1997; Brenner 1999), derived from just a few strong low-resolution (high
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d-spacing) reflections, to restrict a direct-space search for the structure to the
most likely areas of the unit cell.

The latest release of EXPO attempts to take the best elements of the Direct
methods based approaches and combine them with elements of the global
optimization strategies outlined above. In particular, expected coordination
geometry is taken into account in the interpretation of density maps (Altomare
et al. 2000). It seems entirely logical that continuing software developments will
see an equivalent flow of important features from Direct methods into the
global optimization based programs.

1.6 Outlook

It is generally unwise to make predictions about how a particular research field
will develop in the future. After all, few foresaw the arrival and impact of the
'Shake-and-Bake' methodology (Weeks et al. 1994) upon the field of single-
crystal diffraction. However, the last few years have seen structure determina-
tion from powder diffraction data move quickly from simple demonstrations of
underlying principles to real-life applications. It is interesting to consider the
complexity of many of the structure solution examples contained in this book in
the general context of organic molecular structures solved by single-crystal
diffraction methods. It is clear from Fig. 1.4 that powder diffraction is now in a

Fig. 1.4. Distribution of the number of organic (excluding organometallic) molecular
crystal structures in the October 2000 release of the Cambridge Structural Database
versus the number of atoms (including hydrogens where reported) in each structure.



REFERENCES 11

position to contribute valuable crystal structures to the peak of the distribution,
rather than simply adding to its leading edge.
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Structure determination from powder diffraction data:
an overview

Anthony K. Cheetham

2.1 Introduction

The explosion of interest in powder diffraction methods during the last 30 years
has been driven by a number of factors. The major one was most certainly
the development of the Rietveld method (Rietveld 1969) in the late 1960s, since,
at a stroke, this extended the scope of powder techniques from simple, high-
symmetry materials to compounds of substantial complexity in any space
group. Within five years, for example, the method was being used to refine the
structures of orthorhombic and monoclinic materials with as many as 22
atoms in the asymmetric unit (Von Dreele and Cheetham 1974), and by 1977,
Cheetham and Taylor were able to review the application of the Rietveld
method to over 150 compounds (Cheetham and Taylor 1977). The majority of
these early applications involved the use of neutrons, but the field received a
further boost in the late 1970s and early 1980s with the extension of the Rietveld
method to X-ray data (Malmros and Thomas 1977; Young et al. 1977), time-of-
flight neutron data (Von Dreele et al. 1982), and then synchrotron X-ray data
(Cox et al. 1983). These instrumental advances were accompanied by software
developments, such as the availability of the DBWS (Wiles and Young 1981)
and GSAS (Larson and Von Dreele 1987) packages, making possible the ana-
lysis of data from complex mixtures or the simultaneous analysis of more than
one dataset. Another major area of interest has been the development of
methods for solving unknown structures from powder diffraction data, a
subject that is the primary focus of this book.

The developments in powder diffraction have been driven by a growing need
for tools that are able to probe the structures of materials that are only available
in powder form, or can only be studied as powders (e.g. under difficult in situ
conditions). Such materials include many zeolite catalysts, as well as certain
high Tc cuprates and fullerenes. Table 2.1 lists some of the many areas in which
powder diffraction methods have had a major impact; clearly, modern materials
science and many other areas have been major beneficiaries of the developments
in this area during the last 30 years, and this trend will surely continue well into
the twenty-first century.

2
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Table 2.1 Impact of powder diffraction methods in materials science
and other areas

Hydrogen storage Superconductivity
Metal hydrides High Tc cuprates

Magnets Batteries/fuel cells
Magnetoresistance, GMR /^-alumina solid electrolytes

Heterogeneous catalysts Ferroelectrics
Zeolites, clays PbTiO3 etc.

Ceramics Electro-optics
Zirconias Non-linear optics, e.g. KTiOPO4

Novel materials Biominerals
C60 fullerenes Apatites

Coordination compounds Organic materials
Homogeneous catalysts Pharmaceuticals

The aim of this overview is to trace the key developments in powder dif-
fraction methods from their discovery in the early twentieth century to the
present day. The evolution of tools for solving unknown structures will be
emphasized, while remembering, of course, that the refinement step is also an
important component of this process.

2.2 Early history of powder diffraction

The possibility of using powder diffraction methods to study materials was
recognized shortly after the discovery of X-ray diffraction by Laue and von
Knipping in 1910. In particular, the construction of a simple powder dif-
fract ometer was described by Hull in 1917 (Hull 1917), and the instrument was
used to obtain patterns from a number of simple materials such as diamond,
graphite and iron. Even at this early stage, the use of metal foils to remove Kj3
radiation from the X-ray beam was well understood. Within a few years, many
others, including the Braggs and Pauling, had exploited the powder method to
study a wide range of materials, including metals, minerals, and simple organic
solids. It could reasonably be argued that the first ab initio structure deter-
minations were performed during this period, since the crystal structures of
many simple materials (e.g. rocksalt) were obtained from powder diffraction
data alone.

The first systematic attempts to determine unknown structures of non-cubic
materials were probably those of Zachariasen, reported in the late 1940s. For
example, the hexagonal structure of UC13, in space group P6^/m, was deter-
mined by first placing the heavy atom and then estimating the position of the
chlorine by careful inspection of the intensities of different classes of reflections
(Zachariasen 1948a). In the same issue of Acta Crystallographica, a series of
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papers by Zachariasen describe the structures of eight uranium halides and
oxohalides from X-ray powder data (Zachariasen 1948ft), and in the following
year a similar approach was used by Mooney to solve the tetragonal structure of
UC14 (Mooney 1949).

These early approaches might be regarded as trial-and-error methods, though
they reveal great insight into the relationships between trends in the integrated
intensities of different classes of reflections and the locations of the scattering
centres. They certainly laid the foundations for the systematic approaches that
evolved during subsequent decades.

2.3 Early ab initio approaches

There are at least two papers in the 1960s that describe systematic attempts to
use the structure-solving tools of modern crystallography, Direct methods and
Patterson techniques, to solve structures from powder data. In a remarkable
paper by Zachariasen and Ellinger (1963), the monoclinic structure of
/3-plutonium, in space group I2/m, was solved by using a manual Direct
methods phasing procedure. There are seven Pu atoms in the asymmetric unit,
underlining the complexity of this task. A particularly interesting aspect of this
work was the clever use of the anisotropic thermal expansion of/3-plutonium to
unscramble the individual Bragg intensities of overlapping reflections from
patterns collected at different temperatures (see Chapter 9). As will become
clear later, the treatment of overlapping reflections remains one of the major
issues in structure determination from powder data.

Another eye-catching paper from the 1960s is that by Debets (1968) in which
the orthorhombic structure of UO2C12 in space group Pnma was determined by
Patterson methods. As in the work of Zachariasen and Ellinger, their approach
is not radically different from that which has been used widely in the late 1980s
and 1990s. An interesting difference between these early studies and the more
recent work, however, is that the structure refinement step did not take
advantage of least-squares methods, which, of course, are used routinely today.
Nevertheless, the essential correctness of the UO2C12 structure has since been
confirmed by Taylor and Wilson (1973).

2.4 Pre-Rietveld refinement methods

The development of least-squares crystallographic structure-refinement
methods in the 1960s, which was facilitated by the growing availability of digital
computers, was applied not only to single-crystal data but also to powder data.
A number of laboratories, such as UKAEA, Harwell, made widespread use of
single-crystal codes for refining structures from powder data, and some of the
codes were adapted to handle groups of non-equivalent overlapping reflections
that could not be resolved experimentally. Table 2.2 shows an example of such a
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Table 2.2 Integrated-intensity structure refinement
for Fe0923O at 800 °C, based upon powder neutron
diffraction data. There were 12 observations and four
variable parameters: the scale factor, the occupancy
number for the tetrahedral interstitial site, and indepen-
dent isotropic temperature factors for the iron and
oxygen atoms (Cheetham et al. 1970). The Rf value is
0.78 per cent

hkl

111
200
220
311
222
400
331
420
422
333/511
440
600/442

I(obs)

6092
89766
79186
3378

26340
12697
1540

31104
23695
1061
5831

10394

I(calc)

6315
89604
79285
3484

26139
13094
1377

31301
23438

898
6042

10308

refinement, carried out at Harwell shortly before a Rietveld program that would
run on the computer there became available. The paucity of data and the poor
observation-to-parameter ratio make it hard to believe that this was essentially
the state-of-the-art in the late 1960s, but it is important to stress that such
studies played an important role at the time in the quantitative structural
characterization of high-symmetry inorganic materials. A particular class of
materials that benefited from this approach was that of non-stoichiometric
compounds, which are typically high-symmetry phases that are found at high
temperatures. Nevertheless, the limitation of the integrated intensity method,
at the time, was that it could not be applied to the complex patterns obtained
from low-symmetry materials. The advent of the Rietveld refinement method,
however, was soon to solve this problem.

2.5 Rietveld refinement

In response to the need to develop enhanced procedures for obtaining structural
information from powder samples, in the late 1960s, Rietveld (1969) proposed a
method for analysing the more complex patterns obtained from low-symmetry
materials by means of a curve-fitting procedure. The least-squares refinement
minimizes the difference between the observed and calculated profiles, rather
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than individual reflections. In the first instance, this procedure was carried out
with constant wavelength neutrons, rather than X-rays, because of the simpler
peak shape of the Bragg reflections. With constant wavelength neutrons, it can
normally be assumed that the reflections are Gaussian in shape, and the cal-
culated intensity at each point (say, 0.05° 20 steps) on the profile is obtained by
summing the contributions from the Gaussian peaks that overlap at that point.
In addition to the conventional parameters in the least-squares procedure
(i.e. scale factor, atomic coordinates and temperature factors), additional
parameters are required: the lattice parameters (which determine the positions
of the reflections), a zero-point error for the detector, and three parameters that
describe the variation of the Gaussian half-width (full width at half maximum
intensity) with scattering angle. The technique has been applied to a wide range
of solid-state problems and has been reviewed by several authors during the last
25 years (Cheetham and Taylor 1977; Hewat 1986; Young 1993).

The application of the Rietveld method to neutron data in the early 1970s
was soon followed by its extension to laboratory X-ray diffractometer data
(Malmros and Thomas 1977; Young et al. 1977). The problem of the more
complex peak shape was resolved by employing alternative peak-shape func-
tions, such as the Lorentzian and the pseudo-Voigt. Other problems that can
plague X-ray studies include preferred orientation and poor powder averaging
(graininess), both of which arise from the fact that X-rays probe a smaller
sample volume than do neutrons; these were addressed by paying closer
attention to the data collection strategy.

The accuracy and precision of a structure refinement from X-ray data can
normally be optimized by collecting high-resolution data at a synchrotron
source (Cox et al. 1983). The resolution of the powder diffractometers at second
and third generation sources is so good that sample imperfections now play a
major role in determining the shape of the Bragg peaks. This presents both
challenges and opportunities. For the crystallographer, the subtle variations in
peak shape from one class of reflection to another (which may stem from, say,
anisotropic particle size or strain effects) may be an irritation if the sole aim is to
obtain a high-quality refinement of the crystal structure. However, the materials
scientist may be delighted to retrieve a wealth of additional information per-
taining to the microstructure of the sample.

Refinement by the Rietveld method is now commonplace with both labora-
tory and synchrotron X-ray data, although it is not, in general, as precise as the
neutron method (Table 2.3). There are three reasons for this. First, as men-
tioned above, it is more difficult to collect X-ray data that are essentially free
from systematic errors. Consequently, it is not unusual to find that the preci-
sion, as measured in terms of the estimated standard deviations (e.s.d.s), gives a
misleading impression of the real accuracy of the structure. Second, the fall-off
of intensity with scattering angle due to the X-ray form factor reduces the
quality of the information that can be retrieved from the high-angle region of
an X-ray pattern. Third, the wide variation in X-ray scattering factors between
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elements from different parts of the periodic table leads to considerable
differences in the sensitivities with which atoms can be located; in particular,
heavy atoms will be better defined than light atoms. In Table 2.3, for example,
the y coordinate of Cr(2) is determined with greater precision than the y
coordinate of O(2) by X-ray powder diffraction. This problem does not arise to
the same extent with neutrons because their scattering amplitudes (or scattering
lengths, as they are known) fall within a relatively narrow range of values
(Bacon 1975).

The Rietveld method was also extended to the analysis of time-of-flight
neutron powder data collected at pulsed sources. The procedure is essentially
the same as that used in constant-wavelength experiments, except that the peak
shape function is considerably more complex, due in part to the shape of the
neutron pulse, and wavelength-dependent corrections (e.g. absorption and
extinction) must be taken into account (Von Dreele et al. 1982). One advantage

Table 2.3 Structural parameters for a-CrPO4 refined using synchrotron X-ray (marked
X) and neutron (N) data in Imma with e.s.d.s in parentheses (Attfield et al. 1988). Values
from the reported single-crystal study (marked 8) are given for comparison (Glaum
et al. 1986)

Atom

Cr(l)

Cr(2)

P(l)

P(2)

0(1)

0(2)

0(3)

0(4)

X

1/2

1/4

1/2

1/4

0.3790(10)X
0.3766(3)N
0.3773(2)8
0.3603(6)X
0.3610(2)N
0.3611(1)8
0.2263(6)X
0.2240(1)N
0.2238(1)8
1/2

y

1/2

0.3660(3)X
0.3650(4)N
0.36611(3)8
1/4

0.5738(4)X
0.5739(2)N
0.57358(5)8
1/4

0.4914(5)X
0.4907(1)N
0.4902(1)8
0.6352(5)X
0.6368(2)N
0.6363(1)8
0.3509(8)X
0.3486(2)N
0.3496(2)8

z

0

1/4

0.0819(12)X
0.0790(8)N
0.0825(2)8
1/4

0.2269(1 7)X
0.2280(5)N
0.2268(3)8
0.2145(1 1)X
0.2142(3)N
0.2146(2)8
0.0576(10)X
0.0546(3)N
0.0552(2)8

- 0.0457(1 5)X
- 0.0422(4)N
- 0.0432(3)8

o a
"ISO

0.3(2)N
0.283(6)8

0.0(1)N
0.316(4)8

0.0(1)N
0.30(1)8

0.47(8)N
0.345(7)8

0.53(8)N
0.42(2)8

0.62(6)N
0.42(1)8

0.68(5)N
0.56(1)8

0.31(7)N
0.50(2)8

aFor the powder X-ray refinement, overall Biso = 0.24(7) A2
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of time-of-flight powder methods is that the whole diffraction pattern is
collected simultaneously since the counter, or bank of counters, remains sta-
tionary, making it an attractive way of following structural changes that evolve
as a function of time, temperature or pressure. In addition, since the incident
and scattered beams can pass through small apertures in, say, a high-pressure
apparatus, the design of special environments is clearly easier for such mea-
surements (Jorgensen 1988). A further advantage is that it is relatively easy to
obtain high-resolution data by using a long incident flight path and placing the
detectors in the back scattering position.

The Rietveld method is a powerful tool, but it is limited by the same draw-
back that affects powder methods in general: the loss of information that arises
from the compression of the three-dimensional diffraction pattern into a single
dimension. It is also important to underline the fact that the Rietveld method,
though an excellent technique for refining structures, requires a good starting
model if it is to converge successfully and does not, by itself, constitute a method
for structure determination. We shall now return to the question of solving
unknown structures and examine the state-of-the-art in this area.

2.6 Solving unknown structures from powder data

There has been a great deal of interest concerning the determination of
unknown structures from powder diffraction data during the last decade and
there have been several reviews of the subject (Cheetham 1986; Cheetham 1993;
Harris and Tremayne 1996). The process may conveniently be broken down
into a series of steps, though there may be considerable overlap between the
different stages:

(1) determination of the unit cell;
(2) decomposition of the powder pattern into integrated intensities, I/,ki',
(3) assignment of space group from systematic absences;
(4) solution of the phase problem;
(5) refinement of the structure, typically by the Rietveld method.

Most of these stages are discussed in detail in more specialized chapters in this
book, so only a few general comments will be made at this stage.

Step 1, the indexing of the powder pattern to yield a unit cell, is normally
carried out by autoindexing methods, for which a number of powerful computer
programs are now available (see Chapter 7). These include ITO (Visser 1969),
TREOR (Werner et al. 1985) and DICVOL (Boultif and Louer 1991). Access to
more than one of these programs is desirable since they work in different
ways and successful indexing may not always be achieved with one particular
program; the key point is that successful indexing is facilitated by collecting
high-quality data. In practice, with careful instrument alignment, careful data
collection and accurate peak-position determination, it seems that few structure
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determinations stumble at the point of determining the unit cell. Of course, as
mentioned in Section 1.2 of Chapter 1, this situation may well change.

We should also note that the identity of the space group may become
apparent following the autoindexing stage, though uncertainties frequently
remain and must be resolved at a later stage (see below). In cases where the unit-
cell determination is proving difficult, it might be worthwhile to obtain selected
area electron diffraction patterns from microcrystals, noting that an electron
diffraction pattern is the equivalent of a zero-level precession photograph
with X-rays. The feasibility of this approach will depend upon the stability of
the sample in the beam, but the extra effort that it entails may be rewarded,
especially if there is a subtle superstructure to which powder X-ray methods
may not be sensitive.

The second step of the structure determination, the decomposition of the
pattern into individual integrated intensities, is often the most challenging one
because it is here that severe ambiguities may arise due to overlapping of peaks
(see Chapter 8). Such overlapping may be accidental or may be an unavoidable
consequence of the symmetry (e.g. the exact overlap of non-equivalent reflec-
tions in certain high-symmetry Laue groups). A number of powerful single-step
strategies that have been developed to address the pattern-decomposition
problem are now embodied in computer programs such as ALLHKL (Pawley
1981), WPPF (Toraya 1986), GSAS (Larson and Von Dreele 1987, incorpor-
ating the Le Bail method (Le Bail et al. 1988)), LSQPROF (Jansen et al. I992a)
and EXTRA (Altomare et al. 1995). The earliest development in this area, due
to Pawley (1981), was based upon a Rietveld fitting procedure in which the
integrated intensities were refined in addition to the lattice parameters, peak-
shape parameters, etc. Le Bail's method is closely related, but is somewhat more
robust in its treatment of overlapping data.

From this stage onwards, the analysis can mirror that of a single-crystal study.
In stage 3, the possible space groups can be assigned from the systematic
absences, although in cases of uncertainty it may be useful to carry out the
pattern decomposition in a number of alternative space groups (or to obtain a
series of electron diffraction patterns, as discussed above). Uncertainties often
remain (as they do with single-crystal methods) and may have to be resolved
during the structure solution and/or refinement steps. The phase problem is then
solved in stage 4 by conventional crystallographic methods, that is, Patterson or
Direct methods, the choice being dictated by the chemical nature of the material.
Early work in this area utilized programs that had been developed for the ana-
lysis of single-crystal data, but some Direct methods codes that are optimized for
powder data are now available, including EXPO (Altomare et al. 1999) and
SIMPEL (Jansen et al. 1993) (see Chapters 10 and 11). Patterson determinations
are also benefiting from vector-search algorithms (see Chapters 12 and 13).

As with the solution of structures from single-crystal data, light atom
problems will normally respond better to Direct methods, while structures
containing a subset of heavy atoms will be more amenable to Patterson
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techniques. The principal difficulty is that, even if there are no ambiguities due
to peak overlap, the data set will be considerably smaller than that obtained in a
single-crystal study and the phasing procedure will be less straightforward. It
is a tribute to the robustness of modern structure-solving techniques that it is
still possible to determine structures under these unfavourable circumstances.
Once a suitable starting model has been obtained, stage 5, the refinement of the
structure, can proceed by using the Rietveld method. Quite commonly, the
starting model will be incomplete and additional atoms will be found during
the refinement procedure by using difference Fourier methods.

More recently, the probability of solving a structure from powder data has
improved because there has been a move towards the development of pattern-
decomposition methods that are more sophisticated. Typically, these new
methods are not single-step procedures, but involve an iteration between the
pattern-decomposition step and the subsequent Patterson or Direct methods
calculations. For example, the observed intensities that are obtained from a
successful pattern decomposition should yield a Patterson map that fulfils
certain requirements; for example, it should be positive at all points. Some of the
codes that link the pattern decomposition and the structure-solving stage are
DOREES (Jansen et al. 1992ft) and FTPS (Estermann et al. 1992; Estermann
and Gramlich 1993), and those based upon maximum entropy (David 1987,
1990) and Bayesian fitting procedures (Sivia and David 1994). A potentially
powerful approach is the use of entropy maximization and likelihood ranking
(Bricogne and Gilmore 1990; Gilmore et al. 1993), a method that has been used
in other areas of crystallography and has now been adapted for powder data in
the MICE computer program (Gilmore et al. 1990; see also Chapter 14).

2.7 Trial-and-error and simulation methods

In addition to the systematic approaches described above, there has been a long-
standing tradition of solving unknown structures from powder data by trial-
and-error methods. A typical example can be seen in the work of Titcomb et al.
(1974), who solved the superstructure of the metal hydride phase, CeH2+x, by
exploring all of the possible arrangements of the interstitial hydrogens in the
fluorite-related parent structure. The fluorite-related structure of Bi3ReO8 was
solved in a similar manner (Cheetham and Rae Smith 1985). The starting
models obtained by trial-and-error were then refined by the Rietveld method. In
this approach, it is clearly advantageous (and often essential) to use information
that may be available from other studies on the material of interest. In Bi3ReO8,
for example, it was known from infra-red measurements that the oxygen
coordination around the rhenium atom was tetrahedral. Similarly, model-
building, together with information from electron microscopy and 29Si magic
angle spinning NMR, was used to elucidate the structure of the molecular sieve
zeolite, ZSM-23 (Wright et al. 1985).



22 OVERVIEW OF STRUCTURE DETERMINATION

The manual trial-and-error strategy is not very attractive, since it can be very
time-consuming and the chances of success are not particularly high. However,
modern simulation methods, together with the power of modern computers, can
be used to remove much of the labour and uncertainty from this approach by
automating the way in which previous knowledge of a system, or related sys-
tems, is used. In the zeolite area, for example, Deem and Newsam (1989) have
developed a simulated annealing method that can be used to predict unknown
zeolite structures from a knowledge of the unit cell, the space group, and the
number of tetrahedral Si/Al (T) sites in the cell. In cases where the space group
or number of T sites is uncertain, the calculation is sufficiently fast for alter-
native possibilities to be tested. The simulation procedure employs cost func-
tions that depend upon the T-T distances and T-T-T angles in a large body of
known zeolitic structures. Further refinement of this approach involving
the implementation of a biased Monte Carlo scheme was reported recently
(Falcioni and Deem 1999).

Molecular crystals, too, lend themselves naturally to simulation methods,
since their molecular structures (or fragments thereof) are often known with
some confidence. We can use prior knowledge of the molecular structure (or an
energy-minimized molecular structure obtained by quantum mechanical cal-
culations) and move the molecular fragment by translations and rotations
within the unit cell using algorithms ranging from simple grid search to simu-
lated annealing and genetic algorithms (see Chapters 15 and 16). Knowledge of
the space group is again required, of course. The crystal structure can be
predicted by using energy functions based upon appropriate inter- and
intra-molecular potentials, or by comparison between the calculated and
observed X-ray powder patterns. Approximate models can then be refined by
the Rietveld method. Examples of structures solved in this manner include
piracetam, C6H10N2O2 (Louer et al. 1995) and 1-methylfluorene, Ci4H12

(Tremayne et al. 1996). The approach is very straightforward for rigid mole-
cules, but becomes considerably more difficult as the number of degrees of
freedom increases. Nevertheless, algorithmic developments have led to a
situation where the crystal structures of relatively flexible molecular moieties
can be solved quite straightforwardly (see Section 2.8 and Chapters 15 and 16).

2.8 Some examples of structure determination from powder data

A great deal of the development work in the field of structure determination
from powder data has relied on the use of conventional, laboratory X-ray
sources, and there were a number of important early successes in the area (Berg
and Werner 1977; Clearfield et al. 1984). However, synchrotron X-ray data has
profound advantages over conventional X-ray data for structure determination.
In particular, the combination of the high brightness and excellent vertical
collimation can be harnessed to construct diffractometers with unparalleled
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angular resolution, as in the case of the instrument at the National Synchrotron
Light Source (NSLS), Brookhaven National Laboratory (Cox et al. 1986),
where the resolution at the focusing position is <0.02° in 20. This is partly
achieved by constructing the instrument in the vertical plane, since the vertical
divergence, Ov, is only ^0.01° at 2.5GeV. With high-resolution data, the solu-
tion of structures from powder data is greatly facilitated because ambiguities
due to peak overlap are minimized and the information content of the dataset is
optimized. Many successful structure solutions and refinements have now been
performed, a selection of which is given in Table 2.4. On the other hand, rela-
tively few structures have been solved from powder neutron diffraction data.
This is partly a consequence of the lower resolution of most neutron dif-
fract ometers, but it is mainly due to the near equivalence of the neutron scat-
tering lengths for most elements, as a result of which the phase problem cannot
be solved on the basis of locating a small subset of atoms. Some recent examples
of structure solutions from neutron diffraction data, obtained by the applica-
tion of both Direct methods and global optimization strategies, are discussed in
Chapter 5.

Table 2.4 Some examples of ab initio structure determinations from synchrotron X-ray
powder data

Compound

a-CrPO4

I204

A12Y409

MnPO4 • H2O
PbC2O4

Clathrasil, Sigma-2
LaMo5O8

BeH2

UPd2Sn
C5HUNO2

NaCD3

C10N6SH16

BaBiO2 5

(VO)3(P04)2-9H20
CuPt306

Ga2(HPO3)3 • 4H2O
La3Ti5Al15037

Space group

Imma
P21/c
P2l/c
C2/c
PI
I4i/amd
P2lla
Ibam
Pnma
Pna2l

1222
P2i/n
P2i/c
P2l/n
Pn2lm
P2i
Cc

No. of atoms in
asymmetric unit

8
6

15
6
7

17
14
4
4

19
10
33

5
13 non-H
10
29
60

Ref.

1
2
2
3
4
5
6

7,8
9

10
11
12
13
14
15
16
17

l=Attfield et al. 1986; 2 = Lehmann et al. 1987; 3 = Lightfoot et al. 1987; 4 = Christensen et al.
1989; 5 = McCusker 1988; 6 = Kibble et al. 1988; 1 = Smith et al. 1987; 8 = Smith et al 1988;
9 = Marezio et al. 1988; 10 = Kurahshi et al. 1989; 11 =Weiss et al. 1990; 12 = Cernik et al. 1991;
13 = Lightfootrfa/. = 1991; 14 = Teller et al. 1992; 15 = Hriljacrf al. 1991; 16 = Morris et al. 1992;
17 = Morris rf al. 1994
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In the first example of a structure solved from synchrotron X-ray powder
data, carried out in 1986 by Attfield et al. (1986), the orthorhombic structure of
a-CrPO4, with eight atoms in the asymmetric unit, was solved by Patterson
methods using a vector-search procedure; 68 well-resolved peaks were utilized.
A relatively poor ^-factor (19.3 per cent) was obtained for the final Rietveld
refinement with the synchrotron data, no doubt due to problems with preferred
orientation and /^/-dependent line-broadening effects, but a subsequent
medium resolution neutron study (on Dla at ILL Grenoble) gave an excellent
fit (Rp = &3 per cent), confirming the correctness of the X-ray model. A com-
parison of the coordinates obtained from the X-ray and neutron refinements,
and a subsequent single-crystal study, was given in Table 2.3. In particular, we
note that the neutron refinement gives improved precision for almost all atoms,
in spite of the modest resolution of the neutron data.

During the last decade, there has been widespread use of synchrotron powder
methods to solve unknown structures (Table 2.4), the most striking develop-
ment being the extension of the method to systems of very considerable com-
plexity, with as many as 60 atoms in the asymmetric unit of the cell (Morris et al.
1994). Such complex structures normally require a combination of both syn-
chrotron X-ray and neutron data for their solution and refinement, since they lie
at the limit of what can currently be done with a single dataset. With the advent
of global optimization methods, challenging 'equal atom' organic structures are
also being solved. However, subsequent refinement is not trivial. Some recent
examples include forms A and B of famotidine and the nitrate and acetate salts
of remacemide (Admans 2000), and the disordered structure of tetraferrocenyl-
[3]-cumulene (Dinnibier et al. 2000).

The ease of access to good laboratory diffractometers, however, has
encouraged an even greater effort with laboratory data. Structures of high
complexity have been solved (e.g. /3-Ba3AlF9, with 29 atoms in the asymmetric
unit (Le Bail 1993)), and there has been extensive use of the methodologies
in the areas of molecular organic crystals, coordination compounds and
organometallic materials (most of the effort in the powder diffraction area
has traditionally been in the realm of non-molecular inorganic materials).
Eye-catching examples include recent work on bipyridyl complexes of nickel
and copper (Masciocchi et al. 1996), the carbonyl cluster compound
[HgRu(CO)4]4 (Masciocchi et al. 1993) and Ph2P(O)-(CH2)7-P(O)Ph2 (Kariuki
et al. 1999).

2.9 Conclusions

The role of powder diffraction in the structural characterization of materials
has expanded dramatically during the last 30 years. A number of developments
have played important roles: (a) the advent of the Rietveld refinement method,
(b) improvements in laboratory X-ray instrumentation, (c) the availability of
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high-resolution powder diffractometers at pulsed neutron sources and syn-
chrotron sources, (d) advances in computational methods for structure solu-
tion, and (e) improvements in computer hardware (e.g. personal computers that
are capable of running Rietveld codes). The power of powder techniques is such
that they have had an impact in most of the major developments in the field of
new materials during recent years; solid electrolytes, high-temperature super-
conductors, fullerenes, zeolites and giant magnetoresistance (GMR) materials
are obvious examples. As a consequence, powder diffraction has been trans-
formed from the ugly duckling of crystallography into one of the most exciting
and fast-moving areas.

Notwithstanding the remarkable progress, much work remains to be done.
The solution of unknown structures from powder data is by no means routine,
and the methods need to be further automated before they can be used by non-
specialists, even those with crystallographic experience. Furthermore, there is
considerable scope for advances in refinement procedures, in spite of the power
of the Rietveld method. For example, some of the complex structures that are
now being solved are at the limit of what can be refined by current procedures.
As a consequence, the accuracy of many of these more complex structures falls
well short of what we would hope for and aspire towards. This can easily be seen
by looking at the bond lengths that are obtained from refinements of complex
organic or zeolitic materials; it is not unusual to find interatomic distances
that are clearly outside the range that would be considered to be chemically
acceptable.

The solution to this problem will no doubt come from several areas. First, it
will become possible to collect better data, and more of it, especially with access
to short X-ray wavelengths at the third-generation synchrotron sources (sys-
tematic errors in X-ray data can be dramatically reduced at shorter wave-
lengths). Second, the simultaneous analysis of X-ray and neutron data is already
having an impact, but we shall no doubt see the use of data from other tech-
niques such as solid state NMR and EXAFS. In addition, advances in com-
putation are taking us towards a scenario where energy minimization will
become a part of the refinement procedure. For example, it is already clear that
we can sometimes calculate the structure of an all-silica zeolite with better
accuracy than we can determine it experimentally by powder X-ray diffraction
(Cheetham et al. 1997). Finally, we shall see the use of more subtlety in the
refinement process, such as the more extensive use of maximum-entropy
methods (Sakata et al. 1990, 1993).

This overview would not be complete without reference to the developments
in single crystal methods that may have an impact on powder crystallography.
The construction of third-generation synchrotron sources has, once again,
focused attention on the possibility of collecting X-ray data from micron-size
crystals. Progress in this area has not been as rapid as many had expected, but a
recent example from the European Synchrotron Radiation Facility (ESRF) in
Grenoble (Noble et al. 1997) may offer a glimpse of future possibilities in this
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area. Certainly, the use of dedicated synchrotron X-ray stations equipped with
CCD type detectors (such as Station 9.8 at the Daresbury Synchrotron
Radiation Source (SRS)) is transforming expectations of what can be achieved
in terms of structure determination from very small crystals. Nor should we
forget the power of the electron microscope for interrogating small crystals.
There have been several examples (e.g. Vincent et al. 1984; Tsuda and Tanaka
1995) of structure refinements by using higher-order Laue zones (HOLZ) from
convergent beam electron diffraction patterns, and this area is likely to
attract further attention. Nevertheless, the current capabilities and the exciting
opportunities for the future can leave us in no doubt that powder diffraction
will continue to play a dominant role in this area for the foreseeable future.
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Laboratory X-ray powder diffraction

Daniel Louer

3.1 Introduction

The majority of moderately complex crystal structures determined using
powder diffraction data have been obtained from conventional laboratory-
based X-ray diffractometers. Indeed, it was laboratory-based instrumentation
that provided the impetus in the early stages of the modern development of the
powder method. Although synchrotron radiation offers higher resolution and
higher count-rates, modern in-house X-ray powder diffractometers with opti-
mized optics offer sufficient resolution, precision and count rate to permit
successful structure solution. Adequate resolution and peak precision are cru-
cial in the three principal stages involved in crystal structure determination from
powder data: (a) the determination of lattice constants and use of systematic
absences to give space group information, (b) the extraction of structure factor
magnitudes for solving the phase problem and elaborating a structure model,
and (c) the refinement of structural parameters such as atomic coordinates to
give the best fit to the observed data.

This chapter describes the performance and limitations of laboratory-based
X-ray diffraction instrumentation for solving crystal structures ab initio from
powder data. Examples are presented to illustrate the methods and to indicate
the precision of the results obtained. The impact of conventional X-ray powder
diffraction structure solution is discussed and compared with single-crystal
analysis.

3.2 The reflection overlap problem

The essential difference between single-crystal and powder diffraction is the
loss of information that results from the rotational projection of the three-
dimensional grid of reciprocal lattice points on to the one dimension of a
powder diffraction pattern. This feature is often aggravated by line broadening
arising from structural imperfections. The degree of reflection overlap becomes
increasingly severe with increasing angle, because the number of diffraction
points varies as d*3 (d* = 2 sin 6>/A). This theoretical number (TV) is given by
the number of possible lattice points for which d* is less than d^ and is
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approximately equal to the volume of a sphere with radius d^ divided by the
volume V* of the reciprocal unit cell, weighted by the number of symmetry-
equivalent reflections m (e.g. m = 2 for triclinic symmetry):

 

Extracting integrated intensities is thus a pattern decomposition process (see
also Chapter 8). The intensity of each reflection in reciprocal space has a three-
dimensional shape, which is projected onto the single 20 dimension of a powder
diffraction pattern to yield a peak profile with the contribution Hhki(20i) at point
20{. Thus, the discrete intensity y measured at point 20{is given by summing the
contributions of all Bragg reflections to this point

 

Recovering the individual components, Hhu(29), is a systematic procedure
involving the decomposition of a powder pattern into its individual reflection
profiles, without any reference to a structural model. This approach is used in
the course of the structure analysis at two stages: (a) to extract peak positions
for pattern indexing, and (b) to obtain integrated intensities for structure-model
determination.

Obviously, the degree of peak overlap can be substantially exacerbated by
line broadening. This takes the form of a convolution of the instrumental profile
function g(2S), including the wavelength-dispersion contribution, with a sample
profile function fhuC^-O) that contains information on the microstructure of the
sample. The breadth and shape of the individual components observed in the
pattern are then influenced by the combination of instrumental broadening and
the microstructure of the sample:

 

The use of the pattern decomposition technique in the preliminary stages of the
structural study may give an indication of the /^/-dependence of line breadths
and shapes, which ideally should also be incorporated into the refinement step.

3.2.1 Instrumental broadening—g(26)

Instrumental resolution is a major factor in structure determination from
powder data. Good resolution can help to minimize the reflection overlap
problem as long as sample broadening is not significant. Instrumental line
profiles arise from the distribution of wavelengths in the incident beam, con-
voluted with several functions resulting from the geometry of the instrument,
such as beam divergence, the finite width of source and receiving slit, specimen
transparency and residual misalignment. Both the breadth and shape of
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Fig. 3.1. FWHM versus 20 for annealed BaF2 standard specimen, (o) Conventional
diffractometer with an incident-beam monochromator tuned to CuKcij radiation (from
Louer and Langford 1988), (A) High resolution powder diffractometer on station 9.1 at
the Daresbury Laboratory SRS, A = 1.4188 A (from Langford, Cernik and Louer 1991).

instrumental line profiles vary continuously with 20 for conventional angle-
dispersive X-ray diffractometers. An example of the angular variation of full-
width at half-maximum (FWHM) for the commonly used Bragg-Brentano
geometry is shown in Fig. 3.1.

This instrumental resolution function (IRF) (FWHM versus Iff) has been
obtained with monochromatic radiation (CuKc^) from a sample of annealed
BaF2 (Louer and Langford 1988) and shows a minimum of 0.062° 20 at inter-
mediate angles, increasing to twice this value at 130° 20 as a consequence of
spectral dispersion. For comparison, the IRF obtained from the same standard
material on the high-resolution powder diffractometer on station 9.1 at the
Daresbury Synchrotron Radiation Source (SRS) is given in Fig. 3.1.

In Rietveld structure refinement programs, the angular dependence of
FWHM is commonly modelled using a quadratic form in tan0. There are,
however, further subtleties in the angular dependence of the various compo-
nents of the instrumental profile, which can be revealed with the analytical
functions used to model the observed diffraction line profiles (see Table 1.2 in
Young (1995) for an overview of profile functions). Modern fundamental
parameters approaches offer a more rigorous peak-shape formulation (Cheary
and Coelho 1998). Whatever method is used, however, it must be stressed that
an accurate peak description is highly desirable if structure solution is to be



32 LABORATORY X-RAY POWDER DIFFRACTION

Fig. 3.2. Variation of line-profile shape parameters with 20 for the Bragg-Brentano
geometry with monochromatic X-rays (see Fig. 3.3). m: Pearson VII index; rj: pseudo-
Voigt mixing parameter; <p: Voigt parameter (-FWHM//3, where fi is the integral
breadth), L: Lorentzian, G: Gaussian (from Loue'r and Langford 1988).

attempted. In Fig. 3.2, the variation of peak-shape parameters for Bragg-
Brentano optics with monochromatic X-rays reflects the Gaussian character of
g(26) profiles at low angles, where geometric aberrations are dominant, and the
almost Lorentzian contribution arising from the wavelength distribution at high
angles. Similar curves can be obtained for other sources of radiation and
geometries (e.g. Langford et al. 1991).

3.2.2 Sample broadening—fhkiQff)

Sample microstructure often contributes to diffraction line broadening. In fact,
samples with no physical line broadening are likely to contain crystals large
enough to perform single-crystal microdiffraction. The contribution resulting
from 'size' broadening is independent of the order of reflection, while 'strain'
broadening is order-dependent. This means that broadening effects will become
increasingly severe at high angles and that the limit in sin 0/\, from which there
is no reliable diffraction information, is directly influenced by the micro-
structural properties of the sample.

'Size' effects arise from the finite size of domains over which diffraction is
coherent, measured in the direction of the scattering vector. This can be the mean
thickness of individual crystallites, but it can also be related to a subdomain
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structure such as the distance between stacking faults in layer structures or the
distance between dislocations. The breadth of 'size' profiles is inversely pro-
portional to the mean apparent size in the direction of the scattering vector. The
true crystallite size can only be calculated if the crystallite shape is known. The
form of 'size' profiles depends on the crystallite size distribution, and for uni-
modal distributions, the shape is generally not Lorentzian (Langford et al. 2000).

'Strain' broadening represents a variation of ^-spacing between planes per-
pendicular to the direction of the scattering vector and is related to lattice
distortions arising from internal stress distributions, dislocations (see, e.g. Ungar
and Borbely 1996) or deviation from ideal stoichiometry.

Severe diffraction line broadening reduces the number of reliable integrated
intensities extracted from pattern decomposition, which can generally affect the
efficiency of the Direct methods for structure determination. The extraction of
integrated intensities being implicitly avoided with direct space approaches,
such methods may be less sensitive to line broadening (see, e.g. Bataille et al.
2004).

3.2.3 H(x) profiles

A variety of line shapes can be generated from the microstructure of the sample.
The observed profiles usually range from the Gaussian to the Lorentzian limits,
but high and ultra-high-resolution data have revealed profiles for which the
intensity in the tails decreases more slowly than a Lorentzian (e.g. Hastings et al.
1984; Plevert and Louer 1990). Such super-Lorentzian shapes must be correctly
modelled for intensity extraction or Rietveld refinement either through a fun-
damental parameters approach or through the use of empirical functions such
as the Pearson VII with m < 1 or the pseudo-Voigt with r/ > 1. Moreover, to
reduce the loss of integrated intensity arising from truncation effects, the
observed intensity distribution, normally defined as ± k x FWHM relative to
the Bragg peak position, must be adapted to the line shape to incorporate most
of the line profile, for example, fc = 63 to include 99 per cent of a Lorentzian
function, or k = 3 for a Gaussian function (Toraya 1985). Residual truncation is
undesirable but often inevitable in the case of Lorentzian and super-Lorentzian
line shapes.

The precision of a structure determination will depend on how well the
complete powder diffraction pattern has been modelled. The physical para-
meters that describe the origin of sample-dependent line broadening should
ideally be considered as far as possible in pattern modelling. This is not an easy
task for anisotropic 'size' and 'strain' broadening (Delhez et al. 1995), parti-
cularly for low-crystal symmetry, but some progress in this direction has been
made recently (Popa 1998; Stephens 1999).
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3.3 Instrumentation and experimental considerations

High resolution, good counting statistics and precise modelling of peak posi-
tions and peak shapes are essential for structure solution. The additional
information that they provide compensates to some extent for the loss of
information resulting from line broadening. The relative merits of different
X-ray optics used for collecting powder data have been discussed in some
reviews (e.g. Werner 1992; Baerlocher and McCusker 1994; Langford and
Louer 1996). Some of these instrumentation aspects are discussed in this section
with particular reference to their impact in structure solution.

3.3.1 Diffractometer geometries

Guinier focusing cameras were regularly used for obtaining structures in the
early period of ab initio structure determination from powder data. This was
because of their high resolution, the accuracy of measured diffraction angles
and the use of monochromatic radiation (e.g. Werner 1986). A representative
example of this early success is the complex structure determination of the
organomolybdate (NH4)4[(MoO2)4O3](C4H3O5)2 • H2O (Berg and Werner
1977). Powder diffractometers, however, have now largely replaced film
cameras in most laboratories. Both reflection and transmission geometries are
available for laboratory diffractometers.

Although reflection geometry using parafocusing Bragg-Brentano optics is
more popular, transmission geometry with thin film or capillary samples pre-
sents some definitive advantages for structural analysis and requires only a
small amount of sample. The technique is well suited to materials containing
only light atoms, but is less appropriate for strongly absorbing materials.
Furthermore, preferred orientation effects can be reduced significantly with a
capillary set-up. Representative examples of data collected in transmission
mode with monochromatic X-rays and a position-sensitive detector are: (a)
/?-CH3C6H4SO2NH2 (Lightfoot et al. 1992a), C2H4N2O2 (Lightfoot et al.
1992ft) and lithium triflate LiCF3SO3 (Tremayne et al. 1992), which were
studied using thin flat samples, and (b) piracetam (Louer et al. 1995), three
stereoisomers of the cyclic tetramer of 3-aminobutanoic acid (Seebach et al.
1997), and lithium borate LiB2O3(OH) • H2O (Louer et al. 1992), which were
studied using capillary samples.

On the other hand, reflection geometry is suitable for strongly absorbing
materials since there is no absorption correction for a sample with an apparent
'infinite' thickness. The instrument configuration most commonly used with
conventional divergent-beam X-ray sources is based on the Bragg-Brentano
parafocusing geometry shown in Fig. 3.3.

The source (or focal point of an incident beam monochromator i.e. F in
Fig. 3.3), sample and receiving slit lie on the 'focusing circle', which has a radius
dependent on 6. Coherently scattered X-rays from a flat sample then converge
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Fig. 3.3. Geometry of Bragg-Brentano diffractometer with incident beam monochro-
mator (M). X-ray tube focus (S), adjustable knife edge to cut off residual Ka2 component
(F), axis of rotation (O), and detector (D).

on a receiving slit located in front of the detector. The detector rotates about the
goniometer axis through twice the angular rotation of the sample
(0/20 scans). Use of this geometry requires that several important points be
considered.

During a scan, the angle between the sample surface and the incident beam
changes, that is, the illuminated area of the sample changes. As a consequence,
the intensities are incorrectly measured at low angles if part of the incident beam
overshoots the sample and therefore cannot be diffracted. Hence, it is wise to
determine the angle above which the incident beam falls completely on the
sample surface and to collect the data below this angle using a narrower
divergence slit before the sample. This slit should be selected to ensure that the
incident beam does not extend beyond the sample area. The two (or more)
ranges then have to be scaled to one another. This procedure can be useful for
both intensity extraction and structure refinement.

In addition, the use of a flat sample tends to increase the impact of preferred
orientation. To reduce this effect, it is recommended that a side-loading sample
holder be used in order to avoid a smoothing action of the front surface of the
sample (Swanson et al. 1964). Other techniques can also be used to reduce
preferred orientation; these include sieving to produce crystallites with sizes in
the range 5-10 um (Parrish and Huang 1983), spray drying (Smith et al. 1979) or
the admixture of an amorphous material.
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There is also increasing interest in applications for parallel X-ray beams in the
laboratory using, for example, graded multilayer reflective mirrors or poly-
capillary optics. It seems likely that they will have an impact upon structure
solution at the laboratory level in the near future.

3.3.2 Monochromatic radiation

Although the use of monochromatic radiation is desirable in diffraction
experiments operating in the angle-dispersive mode, the most widely used
radiation in conventional powder diffractometry is still the CuKc^ >2 doublet.
Two diffraction patterns are thus recorded simultaneously, which contributes to
a further loss in resolution with increasing angle, particularly at moderate to
high angles. The favourable effect of monochromatic radiation can be seen from
the slightly broadened diffraction pattern of monoclinic Nd(OH)2NO3 • H2O
(Fig. 3.4), whose structure was solved from data collected with monochromatic
radiation (Louer and Louer 1987). However, CuKai>2 radiation has been used
successfully for structure determination of a number of materials. Repre-
sentative examples are Zr(HPO4)2 • H2O (Rudolf and Clearfield 1985) and the
complex structure of/3-Ba3AlF6 (Le Bail 1993).

Better resolution can be obtained by means of a focusing monochromator
(Louer and Langford 1988). There is some reduction in the intensity of the Ka^
line, but this can be partially compensated for by using high-power X-ray tubes.
Some residual Ka2 component (a few percent of the original component) is
often observed at the focal point of the monochromator. This can be eliminated

Fig. 3.4. Diffraction pattern of monoclinic Nd(OH)2NO3 • H2O. (a) Germanium
incident-beam monochromator, CuKcij. (b) Graphite diffracted-beam monochromator,
CuKa1)2.

36
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by incorporating a knife-edge (slit F in Fig. 3.3) that leaves the Kc^ component
unaffected. Typically, powder data up to 150° 20 can be collected with good
counting statistics within 48 h. An example of powder diffraction data for
U2O(PO4)2, used for ab initio structure solution (Benard et al. 1996), is shown
in Fig. 3.5.

Several advantages of using monochromatic radiation have been listed by
Louer and Langford (1988). These include (a) the number of contributing
reflection positions is halved with respect to the Ka1>2 radiation, (b) instrumental
line profiles can be readily modelled with a single analytical function and a
minimum FWHM of -0.06° 26 can be obtained (Fig. 3.1), (c) the shape
of instrumental g(x) profiles varies with angle in a straightforward manner
(Fig. 3.2), and (d) the background is low and is essentially constant over a wide
angular range.

3.3.3 Data quality

High-quality data are essential for structure solution. Diffractometers must be
well-aligned and tested using standard materials. In addition to high instru-
mental resolution, peak positions must also be precise, for both indexing and
Rietveld refinement. The principal errors in peak position are zero-point shift
and displacement of the specimen. If they are not eliminated at source or
properly modelled, experimental imperfections are introduced in the Rietveld
refinement.

The quality of the diffractometer alignment can be evaluated from standard
reference materials. For example, synthetic fluorophlogopite mica (SRM 675
from NIST, basal spacing dQQ1 = 9.98104 ± 0.00007 A), is suitable for diffraction
in reflection geometry. With a thin sample and a high degree of preferred
orientation of the crystallites, ten OO/ reflections are observed in the angular
range 8-135° 20 for CuKc^ radiation. Differences between observed and cal-
culated peak positions of less than —0.005° 20 can be reasonably obtained with a
conventional, well-aligned powder diffractometer (Louer 1992). This precision
is excellent for routine indexing of most powder diffraction patterns for mate-
rials with moderate unit-cell volumes (< —3000 A3).

Although precision in peak position and good diffractometer alignment are
essential, counting statistics should not be neglected (a relative standard
deviation of 1 per cent is obtained for a counting rate of 10 000). Good counting
statistics contribute to stable pattern decomposition and Rietveld refinement.
High-quality data can reveal subtle structural details such as the influence of
hydrogen atoms on the precision of bond lengths within an oxalate group in the
structure of YK(C2O4)2 • 4H2O, which was solved ab initio from powder
diffraction data (Bataille et al. 1999).



Fig. 3.5. Powder diffraction pattern of diuranium oxide phosphate, U2O(PO4)2, collected
with a high-resolution Bragg-Brentano diffractometer (see Fig. 3.3) with an incident-
beam monochromator tuned to CuKc^ radiation.
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3.3.3.1 Unit-cell determination

Instrumental resolution, particularly at low angles, and the accuracy of
observed peak positions are the two crucial prerequisites for powder pattern
indexing. This can be understood from the definition of the figures of merit M20

and F2Q (eqns (7.7) and (7.8) respectively in Chapter 7) used to assess the
reliability of an indexing solution. With higher resolution, more peaks can be
detected, particularly for low crystal symmetry. Lower discrepancies between
observed and calculated g (= l/d2) and 20 values will result if the diffracto-
meter is correctly aligned and care has been taken in determining peak positions.
With the performance of in-house powder diffractometers using monochro-
matic radiation, the quality of data is good enough to index most powder
diffraction patterns (see Louer 1992).

Examples of successful indexing of patterns of materials with large unit-cell
volumes include monoclinic BaTiO(C2O4)2 • 4.5H2O (V= 2597 A3) (Louer et al.
1990), monoclinic sotalol (F=3131 A3) (Shankland and Sivia 1996) and cubic
[(CH3)4N]4Ge4Sio (F=7471A3) (Pivan et al. 1994). In general, the higher
angular precision and accuracy of powder diffractometers at synchrotron
sources give an additional improvement in the quality of the unit cell parameters
derived from the indexing procedures. Two examples of pattern indexing based
on both monochromatic (CuKc^ radiation) Bragg-Brentano data and data
collected on the two-circle diffractometer on station 2.3 at the SRS (A =
1.4039 A) are reported in Table 3.1 (Cernik and Louer 1993).

Higher figures of merit and lower average angular discrepancies (A26>) are
observed with the synchrotron data. However, the values obtained with
conventional high-resolution diffractometers remain excellent, that is, (A26>) =
0.0059° and 0.0038° 26 for laboratory data versus 0.0012° and 0.0016° 26 for
the synchrotron data. The powder data collected with conventional mono-
chromatic X-rays were in fact used to solve the crystal structure ab initio once
the correct space group had been assigned from scrutiny of the diffraction
pattern (Benard et al. 1991; Louer et al. 1988). For further discussion of space
group assignment, see Chapter 8, Section 8.4.

Table 3.1 Indexing comparisons from Bragg-Brentano (B-B) and synchrotron (SRS)
X-ray powder diffraction data ({FWHM} is the average full width at half-maximum,
in ° 26», for the 20 lines) (from Cernik and Louer 1993)

F(A3) M20 F20 (FWHM}

Zr(OH)2(N03)2 • 4.7H20 (triclinic)
B B
SRS

KCaPO4 • H2O (monoclinic)
B B
SRS

530
533

460
460

54
295

72
156

112(0.0059,30)
635(0.0012,26)

107(0.0038,49)
259(0.0016,47)

0.100
0.047

0.077
0.044
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3.3.3.2 Data set of structure-factor magnitudes

Both Patterson and Direct methods of structure solution can be very sensitive to
the accuracy and resolution of the extracted structure factors. For example, the
Direct methods solution of the crystal structure of cubic thiogermanate
[(CH3)4N]Ge4Sio with a unit-cell volume of 7471 A3 [a = 19.5490(4) A,
M20 = 60, ^30= 112(0.0051,52), SG = P43«] (Pivan et al. 1994) exhibited sen-
sitivity to the resolution of the data set. Most of the E'-maps derived from the
extracted structure factors revealed small but unconvincing fragments of the
structure. However, one data set collected up to 80° 20 yielded a partial model.
By taking into consideration the tetrahedral configuration of the GeS4 group,
eight of the 26 E-map peaks could be identified as being likely to be correct. The
model was completed from subsequent Fourier analysis. This type of sensitivity
to high-angle data is not unique to laboratory-based diffraction data—see, for
example, Chan et al. (1999) for a synchrotron-based example. One useful
indicator of the quality of the diffraction data is an estimate of the number of
statistically independent reflections present in the pattern. Altomare et al. (1995)
and David (1999) have proposed such measures, based on a detailed study of
reflection overlap.

3.4 Examples of crystal structure solution

Partial compilations of ab initio structure determinations from laboratory X-ray
powder diffraction data have been reported by several authors (Cheetham 1995;
Langford and Loue'r 1996; Harris and Treymane 1996; Masciocchi and Sironi
1997). They include inorganic, organic and coordination materials. To illustrate
the different approaches available for data collection and their treatment, a few
representative examples are described here. Where appropriate, the precision of
results is also discussed. In all of these examples, powder pattern indexing was
carried out with the program DICVOL91 (Boultif and Loue'r 1991), using high-
resolution data collected in Bragg-Brentano mode. Space group assignments
were derived using the program NBS*AIDS83 (Mighell et al. 1981). Different
instrumental setups were used for collecting powder data for structure solution
purposes, and different methods were used for solving the structures. All
calculations were carried out on a desktop computer using programs listed
elsewhere (see, e.g. Loue'r and Louer 1994).

3.4.1 Bragg-Brentano powder diffraction data

The structure of Zr(OH)2SO4 • 3H2O was solved from powder data collected
with monochromatic X-rays (CuKc^) and Bragg-Brentano geometry (Gas-
coigne et al. 1994). The pattern was indexed with a monoclinic unit cell (a =
8.3645(4)A, b = 15.1694(9)A, c = 5.4427(3)A, (3= 103.145(5)°, M20=120,
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Table 3.2 List of the highest Patterson peaks (arbitrary scale) of Zr(OH)2SO4 • 3H2O
and their interpretation in terms of vectors between Zr atoms and Zr and S atoms

Peak u v w H Interpretation

Origin
1
2
3
4

0
0
0.6644
0.3464
0.0811

0
0.1486
0.5
0.3538
0.1388

0
0.5
0.3592
0.149
0.518

1000
232
202
104
78

Zr Zr
Zr Zr
Zr Zr
Zr S

^30=170(0.0037,48), Z = 4, SG = P2i/c). Using the Le Bail pattern-decom-
position technique (Le Bail et al. 1988 ; see Chapter 8), 579 integrated intensities
were extracted in the angular range 10-84° 20. The Zr and S atoms were located
by Patterson methods and the structure completed by Fourier recycling.

A list of the five highest Patterson peaks and their interpretation in terms of
vectors between Zr atoms and between Zr and S atoms is given in Table 3.2. The
presence of a Harker line at 0, \ — 2y, ^ (peak 1) and of a Harker section of type
2x, \,\ + 2z (peak 2) gives direct information about atomic coordinates. Peak 3,
with half-multiplicity, corresponds to the components —2x, 2y, —2z, and peak 4
is a vector between Zr and S. The final coordinates in the refined structure are
x = 0.8321, j = 0.1757, z = 0.4241 for Zr and x = 0.7566, y = 0.0360 and
z = 0.9030 for S.

The electron density map, computed with the signs derived from the con-
tribution of the Zr and S atoms only, allowed all other non-hydrogen atoms to
be located. The refinement of the complete structure model, using data in the
range 15-135° 20, converged to give an ^=0.03. The final Rietveld plot is
shown in Fig .̂ 3.6. The maximum deviation of the S-O distances from the mean
value 1.477 A was ±0.014 A and the O-S-O angle varied in the range 107.3-
111.4 °, values close to the distances and tetrahedral angles normally observed in
a sulphate group. In this example, the ratio of atomic numbers of Zr and O is
small and this explains why the atomic coordinates of the atoms are determined
with roughly equal accuracy.

In contrast, in the case of U(UO2)(PO4)2 (Benard et al. 1994), the X-ray
powder data were dominated by the scattering contribution of the metal atoms
(the ratio of the atomic numbers of U and O is greater than 11). The quality of
the diffraction pattern was, however, satisfactory and the structure could still be
solved. At the end of the final Rietveld refinement (RF=0.04, ^^ = 0.14), a
significant distortion of the phosphate group was observed, with P-O distances
ranging from 1.46 to 1.62 A. By using neutron diffraction data, where the
neutron scattering lengths for U and O are in the more favourable ratio of
~1.45, Rietveld refinement yielded P-O distances in the range 1.510-1.565 A,
which are in good agreement with the distances usually found in structures
solved from single-crystal data.



Fig. 3.6. The final Rietveld plot of Zr(OH)2SO4 • 3H2O, CuKai radiation (RF=Q.Q3,
Rwp = 0.ll) (from Gascoigne et al. 1994).
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3.4.2 Debye-Scherrer powder diffraction data

Transmission geometry is suitable for weakly absorbing specimens (typically
materials containing only light atoms) and Debye-Scherrer geometry with
focusing optics was used for both examples in this section. Monochromatic
radiation (CuKc^) was selected with an incident-beam curved-quartz mono-
chromator with asymmetric focusing (short focal distance 130mm, long focal
distance 510mm). A 0.5mm diameter glass capillary was mounted at the centre
of the goniometer and data were collected using a cylindrical position-sensitive
detector (INEL CPS120), which allows a simultaneous recording of a powder
pattern over a 120° 20 range. This wide-angle detector consists of 4096 channels
with an angular step of ^0.03° and requires careful angular calibration. To
minimize angular errors, a self-calibration by the materials themselves was
carried out after collecting reference data sets from thin deposits of the materials
on silicon plates using a high-resolution Bragg-Brentano diffractometer.

3.4.2.1 Lithium diborate hydrate

The diffraction pattern of lithium diborate hydrate, LiB2O3(OH) • H2O, was

indexed with an orthorhombic unit cell (a = 9.798(1) A, b = 8.2759(7) A, c =
9.6138(8) A, M20 = 56, ^30= 109(0.0081,34), SG = Pnna). Structure-factor
moduli were extracted for sin0/\<0.48 A^1 using the Le Bail pattern-decom-
position procedure and the structure was solved using Direct methods. Although
the solution was originally obtained with the program MULTAN, the powder
data have since been reanalysed with SIRPOW92 (Altomare et al. 1994). The
number of 'independent observations' (Altomare et al. 1995) in the dataset was
calculated to be 173, about 47 per cent of the total number of reflections present.

All non-hydrogen atoms were found in the top .E-map, with (a) peaks
corresponding to O atoms exhibiting a relative intensity in the range 99-100,
(b) peaks corresponding to B atoms exhibiting a relative intensity in the
range 56-53 and (c) the Li atom exhibiting a relative intensity of 27. The
corresponding R factor obtained from SIRPOW was 0.07. A projection of
the structural model found by the Direct methods is compared to the final
refined structural model in Fig. 3.7. Large fragments of the structure are clearly
recognizable in Fig. 3.7(a). For example, tetrahedra 9 and 4 correspond to the
boron atoms B(3) and B(l) (Fig. 3.7(b)) and peak 7 corresponds to the triangle
centred on B(2). The final Rietveld refinement converged to the structure-model
indicator ^=0.05.

More recently, the crystal structure of LiB2O3(OH) • H2O has been solved
again from single-crystal data collected up to sin 6>/A = 0.807 A^1 (Loue'r et al.
1997), which is considerably higher than the limit of the powder data
(0.48 A^1). The results were essentially the same at each of the three stages of the
structural analysis. However, due to the higher resolution of the single-crystal
data set, a higher precision on the atomic coordinates was obtained and, on
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Fig. 3.7. (a) Representation and interpretation of the E-map computed with the best sign
set obtained by application of the direct methods, (b) Final structure model of
LiB2O3(OH) • H2O.

Fig. 3.8. The molecular structure of piracetam.

average, the results agreed within 1 combined standard uncertainty (s.u.) for x
and z and 2 combined s.u. values for y.

3.4.2.2 Piracetam

The organic compound (2-Oxo-l-pyrrolidinyl)acetamide (piracetam, Fig. 3.8) is
a drug substance with potential applications in a number of therapeutic areas
(Gouliaev and Senning 1994).

Three polymorphs are known. The structures of the triclinic (Pi) and
monoclinic (P2i/«) phases have been determined from single-crystal data,
showing that the conformation of the piracetam molecule is nearly identical in
both phases. The third phase (form I) is formed as a result of a phase trans-
formation of one of the stable phases upon heating at 135 °C. At room tem-
perature, this third phase is stable for only about 2h. Powder diffraction data
could, however, be collected using Debye-Scherrer geometry combined with a
curved position-sensitive detector. For organic materials such as piracetam,
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diffraction peaks usually fade quickly with increasing angle, vanishing at
moderate angles (~60° 20 with CuKai radiation). Thus, whilst pattern
indexing and space group assignment were successful (a = 6.747(2) A,
b = 13.418(3) A, c = 8.090(2) A, M20 = 25, F3Q = 49(0.0145,42), SG = P21/n), the
application of Direct methods failed to solve the structure of the metastable
polymorph.

An alternative approach for the crystal structure solution of such organic
phases is to use real-space methods in which structure models are postul-
ated and either (a) optimized with respect to the powder diffraction data or
(b) optimized with respect to another function and then verified against the
powder diffraction data. These real-space approaches are discussed further in
Chapters 15 and 16. For the metastable polymorph of piracetam, the atom-
atom potential method, introduced by Kitaigorodsky (1973), was used (Louer
et al. 1995). The method assumes that the molecular conformation is known and
involves searching for the most favourable crystal packing constrained by the
known unit-cell dimensions and space group symmetry. The six-parameter
space of molecular rigid-body translations and rotations is explored globally in
order to find the lowest minima of crystal-lattice potential energy. The unique
region of this space (Hirshfeld 1968), an analogue to the asymmetric unit cell, is
used to span the grid of starting points for energy minimization. The energy is
calculated using empirical atom-atom potential functions fitted to predict the
known crystal structures of the given chemical class (Pertsin and Kitaigorodsky
1986). While the systematic search normally requires extensive computer work,
further restrictions imposed on the searchable space, and even its dimensionality,
are frequently possible due to chemical intuition. For example, considerable
computational effort is saved in the case of molecular organic compounds by
incorporating the knowledge that only some hydrogen-bonded motifs are
probable. Computational details and examples have been reported in several
articles (e.g. Williams 1991; Dzyabchenko et al. 1996). The method was first
applied to the two known piracetam polymorphs, showing that the optimized
and observed structures were in fair agreement with one another (Dzyabchenko
and Agafonov 1995). This information was then used to predict the structure of
the metastable phase. As a result of packing calculations, two distinct energy
minima (—100.78 and —87.29 kJ mol^1) were found, suggesting the existence of
two additional polymorphs of piracetam. However, only the higher energy
structure matched the experimental powder data, the structure rapidly con-
verging to an ̂  = 0.04 in a Rietveld refinement (Louer et al. 1995). (Recently,
Fabbiani et al. (2005) succeeded in obtaining single-crystal X-ray diffraction
data at 150 K from a single crystal of form I. From their structure determina-
tion, the authors concluded that 'our crystal structure of form I is in very
good agreement with the structure obtained from the previous powder diffraction
study'.) This approach was also applied in a recent study, in which
crystal-packing calculations and laboratory X-ray powder data were
combined to elucidate the structure of a modification of 4-amidinoindanone
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guanylhydrazone (Karfunkel et al. 1996). Alternative direct-space methods,
employing search methods such as simulated annealing, are now popular in the
study of organic materials. Sophisticated software is available and it has been
proved that high-quality laboratory (capillary) powder X-ray diffraction data
are sufficient for successful structure solution of flexible molecules (e.g. Andreev
and Bruce 1998; Engel et al. 1999; Giovannini et al. 2001).

3.5 Conclusions

Laboratory-based X-ray powder diffractometers are sufficient for structure
solution of moderately complex crystal structures. Even if higher resolution
proves to be essential, in-house diffractometers still offer an inexpensive
preliminary stage in the study of more complex structures. For example, better
use of valuable synchrotron beamtime is assured if the material under study can
be indexed and the space group determined using a laboratory source. Tuneable
synchrotron radiation, coupled with ultra-high instrumental resolution, clearly
dominates the frontiers of structure solution. However, the sheer number of in-
house diffractometers relative to synchrotron-based powder diffractometers
means the impact of ab initio structure determination from conventional X-ray
sources will continue to be considerable.
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Synchrotron radiation powder diffraction

Peter W. Stephens, David E. Cox and Andrew N. Fitch

4.1 Introduction

Synchrotron radiation is the most powerful source of X-rays currently available
for powder diffraction experiments. The combination of high intensity, intrinsic
collimation and a continuous wavelength spectrum leads to a large number of
significant advantages over laboratory sources. The basic properties of syn-
chrotron radiation and their concomitant features for X-ray diffraction are
covered in many reviews (see, e.g. Coppens 1992). The spectral intensity
(photons/s per solid angle per fractional bandwidth) of several synchrotron
sources currently in use for powder diffraction experiments are compared with a
typical fixed-target X-ray tube in Fig. 4.1. The advantages of the former are
clear. There is an even greater discrepancy between the brightness (intensity
divided by source size) of X-ray tubes and synchrotrons, not to mention that
between the various synchrotron radiation sources. Furthermore, special inser-
tion devices, known as undulators, which produce far greater spectral bright-
ness in the X-ray regime, are available, especially at so-called third-generation
storage rings. While most structure solutions from powder diffraction data
are currently performed with samples sufficiently large that intensity, rather
than brightness, is the figure of merit for the source, it is likely that improved
source characteristics will have a significant impact on powder diffraction in
the future.

In principle, one might use such a source to illuminate a sample to obtain a
signal several orders of magnitude larger than that produced with a standard
laboratory source. However, it is more often applied to increase the resolution
(in Iff) beyond that of a conventional laboratory diffractometer. The flux at
the sample position of a sealed-tube diffractometer is typically 2.0 x 109

photons/s compared with 1.0 x 1011 at a typical synchrotron powder diffraction
station. The difference between the ratios of source intensity to flux at the
sample position is due to differences in the optics.

This chapter is devoted to a discussion of how powder diffraction experi-
ments can take advantage of the properties of a synchrotron source, and to
considerations of how the data are best processed, with a particular emphasis on
structure solution. The final part of the chapter reviews a number of 'typical'
structure solutions utilizing synchrotron powder datasets.

4
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Fig. 4.1. Spectral intensity versus energy for several synchrotron sources, compared with
that of a Cu X-ray diffraction tube. Computations courtesy of Steve Hulbert (storage
rings) and John Gilfrich and Charles Dozier (X-ray tube) according to the techniques
described in Hulbert and Weber (1992), Brown and Gilfrich (1971), and Brown et al.
(1975).

The higher resolution leads (sample permitting) to sharper, better-resolved
peaks. Peak positions can thus be determined more accurately. This is particu-
larly favourable for indexing powder patterns and assigning the correct space
group in the initial stages of structure solution. In profile fitting and anal-
ysis, precise knowledge and consequent control of lineshape is important for
Rietveld refinement, but essential for ab initio structure solution. The entire
philosophy of Rietveld analysis is to minimize the impact of overlapping reflec-
tions; unresolved peaks may reduce the amount of information to some degree,
but do not generally compromise the ability of the technique to reach a satis-
factory state of convergence. However, because many of the techniques of
structure solution, for example, Patterson maps and Direct methods, are based
on knowing the intensity of each individual reflection, they are much more sen-
sitive to the loss of this information. Similarly, if there are systematic differences
between the experimental data and the theoretical lineshape used in a refine-
ment, these will degrade the profile .R-factor achievable in a Rietveld refinement
without necessarily introducing significant bias in the result. When intensities
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are extracted for structure solution, however, the same systematic peak-shape
differences are likely to produce incorrect extracted intensities and introduce
additional unwanted correlations between the intensities of nearby peaks.

4.2 Synchrotron powder diffraction instruments in use for
ab initio structure determination

The most widely-used configurations for synchrotron powder diffractometers
that are best suited for ab initio structure solution are shown in Fig. 4.2.
A feature common to all of these instruments is that they use a crystal mono-
chromator, typically Si or Ge, to select a given wavelength from the synchrotron
beam. Another feature that is frequently encountered is a means of focusing the
X-ray beam on the sample, such as a mirror or bent-crystal optics. While no
environmental chambers are illustrated, such instruments can usually accom-
modate sample cryostats, ovens, and pressure cells. The intensity of the X-ray
beam from a storage ring decays with time, so the beam incident on the sample
must be monitored and the diffracted signal normalized accordingly.

The simplest configuration for a synchrotron radiation X-ray powder dif-
fractometer uses a single receiving slit as the resolution-determining element,
and is illustrated in Fig. 4.2(a). This is the configuration, for example, of

Fig. 4.2. Sketches of several popular geometries for synchrotron powder diffraction
setups, (a) illustrates the basic components of a typical synchrotron beamline with a
simple detector slit, (b) is the analyser crystal geometry, (c) shows a parallel-blade
collimator, (d) an electronic position sensitive detector, and (e) an X-ray image plate.
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beamline 9.1 at the SRS in Daresbury (Langford et al. 1991). Either a small
sample (such as a capillary), the image of the source on an extended sample
(such as a flat plate), or a second upstream slit on the detector arm can be used
to limit the angular divergence of the diffracted beam. Note that this is not
equivalent to the parafocusing condition of a typical laboratory X-ray powder
diffractometer, because the incident beam is not diverging. This design gives the
highest intensity, but does not have the high resolution and the insensitivity to
sample misalignment or transparency of the setups described below.

Fig. 4.2(b) shows a crystal analyser configuration, pioneered by Hastings et al.
(1984), in which the X-rays diffracted from the sample powder are diffracted
again from an analyser crystal before reaching the detector. This use of a single
crystal as a receiving slit offers the highest angular resolution, less than 0.01° full
width at half maximum (FWHM), and discrimination against fluorescence
from the sample; the angular resolution is much better than the intrinsic widths
from samples usually encountered, so the widths of diffraction peaks are gen-
erally determined by the sample.

One improvement on the basic configuration of Fig. 4.2(b) is to couple several
detectors to the same axis, allowing the pattern to be recorded in several
(generally overlapping) segments simultaneously. Two such multiple analyser
systems are currently in use. On beamline BM16 at the European Synchrotron
Radiation Facility (ESRF), the detector bank consists of nine scintillation
counters, each behind a separate Ge(l 11) analyser crystal, with the nine crystals
mounted on a single rotation stage on the 20 arm (Hodeau et al. 1998). The
angular separation between each channel is close to 2°. Consequently, nine
diffraction patterns, offset from one another by c. 2°, are measured simulta-
neously. This beamline often works with short wavelength X-rays (0.3-1.0 A),
and thus a diffraction pattern is usually complete by 50° in 20. This is one of the
reasons it is desirable to minimize the separation between channels, so the
detectors are concentrated in the region of interest. Data are collected in a
continuous scanning mode, where the encoder on 20 and the counts accumu-
lated in the electronic sealers are read (without resetting) at up to 100 times/s,
depending on the rate of scanning. Following data collection, the counts from
the nine channels are rebinned, taking account of the exact separation between
the channels, the different detector efficiencies, and the decrease in the beam
current during the scan, to produce the equivalent normalized step scan, which
is more suitable for analysis with standard programs. The five detectors of the
powder diffractometer operated on beamline 4B at the Photon Factory are
separated by 25° (Toraya et al. 1996), and one must make a correction for
sample illumination, because the angles between the incident and diffracted
X-ray beams and the sample are not equal.

Three groups have described the construction of parallel-blade collima-
tors with angular acceptance of 0.03-0.07° for powder diffraction, schemati-
cally illustrated in Fig. 4.2(c) (Parrish et al. 1987; Cernik et al. 1990; Toraya
et al. 1995); collimators with comparable specifications are also available
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commercially. The theoretical transmission of such collimators is typically 50-
75 per cent. This is a better match to the angular width from typical samples,
and so the intensity available from such a setup is generally significantly larger
than from an analyser crystal configuration. An energy-sensitive detector, such
as cryogenically cooled intrinsic germanium gives a degree of discrimination
against X-ray fluorescence background, but such detectors generally have a
longer dead time than do the scintillation counters in typical use, and so are
limited to signal rates of less than c. 30 000 counts/s. A further advantage of the
parallel-blade configuration is that the wavelength can be changed rapidly,
because there is no analyser crystal to be aligned. One point to be considered
with parallel-blade collimators is that the effective sample size should be several
times the spacing between foils, so that slight movements of the diffracted beam,
caused by imperfect alignment or specimen opacity, are averaged over a number
of blades; the detector then views a proper statistical sample.

For more rapid data collection, it is advantageous to use a linear position-
sensitive detector (PSD) as illustrated in Fig. 4.2(d). Both flat and curved
detectors are available commercially; the angular resolution that can be
achieved depends on the detector resolution (—100 p,m), the width of the sample
or incident beam, and the distance between sample and detector, and typically
ranges between 0.05° and 0.1°. Flat detectors are mounted on the 20 arm and
stepped at appropriate intervals during data collection; they have the advantage
that they can be moved further from the sample if higher resolution is needed,
and can be used with both narrow-diameter capillaries and flat-plate samples in
essentially symmetric reflection or transmission geometry. However, simulta-
neous data collection is only possible over a few degrees with flat detectors,
whereas curved detectors may cover as much as 120°. Because most linear PSDs
rely on delay-line readout and time-to-amplitude converters, their maximum
counting rates are limited to around 30000 counts/s over the entire angular
range. However, an order-of-magnitude increase is possible with the use of time-
to-digital converters (Smith 1991). Gas proportional detectors also have suffi-
ciently good energy resolution to allow discrimination against fluorescent
radiation or higher order harmonics. They may also be used in the 'escape-peak'
mode with Kr gas (Smith 1991). With this technique, an angular resolution of
-0.03° can readily be obtained (Jephcoat et al. 1992).

Another version of a position sensitive detector for recording powder dif-
fraction patterns is the X-ray imaging plate, a form of electronic film originally
developed for diagnostic radiography (Miyahara et al. 1986; Ito and Amemiya
1991). This is a flexible sheet, typically 20 x 40cm in size, which uses a meta-
stable phosphor to store the electronic energy when an X-ray is absorbed, and
releases it as fluorescence when a laser beam is scanned over its surface. Imaging
plates offer parallel data collection over a large area (a) without the limited count
rate typical of electronic PSDs, (b) with a very large dynamic range and con-
venient readout relative to conventional film, and (c) with a spatial resolution on
the order of 100 um. On the other hand, the recorded intensity decays somewhat
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between exposure and readout, and for best results, they must be handled in the
dark. One can either collect a powder pattern over the entire imaging plate at
one time, as shown in Fig. 4.2(e), or scan the imaging plate behind a fixed slit to
obtain time-resolution. The former technique, of integrating around the Debye-
Scherrer rings, is particularly useful with small or granular samples. Sophisti-
cated analysis techniques (Hammersley et al. 1996) are required to reduce the
data to a one-dimensional pattern with the angular accuracy required for struc-
ture refinement or solution with imaging plates from powder samples, but there
have been some impressive successes at the Photon Factory (Honda et al. 1990;
Takata et al. 1992, 1995) and the NSLS (Norby 1997). The angular resolution
available in an imaging plate camera is improved by increasing the sample to
plate distance, and a large instrument with a 56.3 cm diameter is in use at the
Australian National Beamline Facility at the Photon Factory (Sabine et al.
1995).

Both the crystal analyser and the parallel-blade collimator share the advan-
tage that the instrument measures the angle of the diffracted X-ray, rather than
its position through a receiving slit. This ensures that the system is immune to
parallax errors due to sample displacement or the partial transparency of the
sample to X-rays, which are encountered with simple receiving slits (Fig. 4.2(a))
or PSDs (Fig. 4.2(d) or 4.2(e)). This is particularly important for indexing and
other aspects of structure solution, where peak locations must be determined
accurately.

4.3 Angular resolution, lineshape and choice of wavelength

The instrumental contribution to the width of a reflection at a synchrotron
source arises from a combination of many factors. The angular width of a
synchrotron X-ray beam near the critical energy is of the order of the electron
rest mass (0.511 MeV) divided by the electron energy (e.g. 0.20 mrad (0.01°) for
the 2.58 GeV NSLS machine), but the angular size of the sample may be much
smaller, perhaps lmm/15m = 0.0038°. The X-ray source size from a storage
ring (e.g. 0.2mm FWHM at ESRF) is generally smaller than the samples in
typical use, so it makes a negligible contribution to the angular width. The
Darwin widths of the monochromating (and analysing) crystals are of the same
order of magnitude as these geometric effects (e.g. 0.0015° for Si (111) at
10 keV). The intrinsic width is a minimum at the point where the diffraction
angle is the same as that of the monochromator, and it grows at larger dif-
fraction angles due to chromatic dispersion. The Darwin curves of the mono-
chromator (and analyser) have tails proportional to the inverse square of the
distance from the Bragg angle. This contributes to the largely Lorentzian
character of the lineshape, which is in contrast to the nearly Gaussian lineshape
obtained with typical neutron and laboratory X-ray diffractometers. The
sample-to-detector parallax for PSDs and imaging plates generally outweighs
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the source and monochromator contributions in such configurations, so a nearly
Gaussian or even more rectangular lineshape is obtained. In all, an analytical
prediction of the instrumental lineshape by convoluting the contribution of each
element is a difficult exercise.

Experimental measurement of the instrumental lineshape is also problematical,
because there is no test sample free of finite size or strain broadening. Certain
materials such as Si and LaB6 are frequently used as lineshape standards, but
they really only provide an upper limit to the diffractometer resolution. Indeed,
the peaks from any useful powder diffraction experiment must be much broader
than the intrinsic resolution of the instrument, because, in order for kinematic
scattering intensities to be observed, the grains must be much smaller than the
extinction length, and therefore produce diffraction peaks much broader than
the Darwin width. The widths of several experimentally measured peaks from
LaB6 are plotted vs. energy in Fig. 4.3(a), and the variation of peak width vs.
scattering angle at one particular X-ray wavelength in Fig. 4.3(b).

A priori knowledge of the intrinsic instrumental lineshape is not especially
important for the task of structure solution, because the techniques of peak
fitting and intensity extraction or modelling generally fit the observed lineshape
with a sufficient number of adjustable parameters. Sample dependent con-
tributions are typically broken down into size and strain effects: the former
gives an angular width T2g proportional to l/cos(6>) while the latter grows in

Fig. 4.3. (a) Fitted FWHM of the (100) and (300) peaks from LaB6 (National Institiute
of Standards and Technology Standard Reference Material 660) at various photon ener-
gies. Also shown are the Darwin widths (full width between y =±1) of the Si(l 11) Bragg
reflections, (b) Fitted FWHM of several LaB6 peaks at an X-ray wavelength of 0.70 A.
(Data taken at NSLS beamline X3B1 with Si(l 11) monochromator, Ge(l 11) analyser, in
flat-plate sample geometry.)
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proportion to diffraction order, so that T2g increases as tan(6>). The considerable
literature on sample broadening and the choice of appropriate lineshapes is
reviewed elsewhere, for example in Young (1993).

In any powder diffraction measurement, the low-angle peaks are asymme-
trically broadened to the low-angle side, due to the intersection of the curved
Debye-Scherrer cone with a flat receiving slit. This is equally true with analyser
crystal geometry, where the receiving slit is in momentum, rather than physical
space. The issue frequently appears to be more serious with synchrotron
data, because the peaks are intrinsically sharper. The analytical computation of
the correct broadening profile is straightforward (van Laar and Yelon 1984;
Eddy et al. 1986; Finger et al. 1994), but many Rietveld and Le Bail extraction
programs contain only an empirical approximation to the lineshape. The tra-
deoff between the lineshape and integrated intensity, as controlled by the
transverse slit size is illustrated in Fig. 4.4. Note that the high-angle sides of the
peaks are equally sharp, so that increased transverse slit width only broadens
the low-angle side of the peak. Therefore, accepting a larger solid angle (or
sample illuminated size) increases the peak signal with only a partial reduction
in resolution. Since one cannot completely remove the effect by narrowing the
beam to any finite value, it is important to view it as a parameter which is under
the experimentalist's control, and which should be chosen to be appropriate for
the specific measurement. One should also note that the peak asymmetry effect
becomes more serious at decreasing Bragg angles, which occur for either
increasing unit-cell sizes or decreasing X-ray wavelengths. In our experience, the
semi-empirical asymmetry corrections used in most extraction and refinement
programs create serious systematic errors. While some Rietveld programs have
implemented the correct geometry for many years (David et al. 1992), at the
time of this writing, only two of the widely-used Rietveld programs contain the
correct geometry: GSAS (Larsen and Von Dreele 1985-94), and FullProf
(Rodriguez-Carvajal 1997). We hope that the increased use of advanced powder
techniques will motivate more people to incorporate the correct geometry into
their codes.

One important choice faced by the synchrotron powder diffractionist is that
of the wavelength at which the measurement should be performed. The source
intensity corrected for the transmission of the windows and optical elements
generally has a broad peak, but is useful over a wide range, for example,
between 5 and 25keV at the NSLS, and from 5 to 40keV at the ESRF
(E (keV) x A(A)= 12.398keVA). The photon energy also affects the angular
width of the diffraction peaks. A given pair of peaks will have a greater angular
separation at long wavelength, but they also become broader, so that the
resolution in Sd/d does not improve. For example, Fig. 4.5 compares the line-
shape observed from a quartz sample at various wavelengths, for analyser
crystal and collimator geometries. This shows that for a typical, somewhat
strain-broadened sample, the ability of an analyser-geometry diffractometer to
separate nearby lines does not depend strongly on the wavelength. The data
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Fig. 4.4. (a) Si(l 11) reflection at A = 1.15 A, showing pronounced peak asymmetry. The
sample was 'gently crushed' Si powder in a capillary. The illuminated part of the sample
and the detector slit were both 8 mm wide, and the sample to detector distance was 33 cm.
The smooth curve is a fit to a pseudo-Voigt lineshape corrected for axial divergence, as
described in the text; also shown is the difference curve, (b) Si(l 11) and (200) peaks with
equal source and detector slit widths of 8, 6, 4 and 2mm, showing the evolution of the
asymmetric broadening.

plotted in Fig. 4.5 show that the constant angular width of the collimator
degrades the Sd/d resolution as the energy is increased, whereas that of the
analyser remains approximately constant. At the same time, the intensity of
collimator relative to the analyser increases with increasing photon energy,
because the Darwin width (and therefore the integrated intensity) of the
analyser crystal decreases roughly in proportion to A.

The continuous spectrum from a synchrotron radiation source also allows the
exploitation of anomalous scattering in powder diffraction experiments. The
topic has been reviewed at length elsewhere (Materlik et al. 1994; Cox and
Wilkinson 1994); here we only touch on the fundamentals. The scattering factor
/for an atom is a function of scattering angle 20 and photon wavelength A, but
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Fig. 4.5. Powder reflections of quartz. {212}, {203}, and {301} reflections at various
X-ray wavelengths for analyser and collimator geometries. Data taken at NSLS beamline
X3B1 with Si(lll) monochromator and sample in 1.0mm diameter capillary. The
analyser crystal is Ge(l 11), and the collimator has 0.03° FWHM. All scans have the same
vertical units of X-ray counts/s/lOOmA of electron beam current. Note the different
vertical scale factors.

to a good approximation, it can be separated into the form

Here/o is the usual atomic scattering factor, dependent only on the magnitude
of the scattering vector; in the limit of low angles, it approaches the number of
electrons in the atom or ion./' and/" are the real and imaginary parts of the
anomalous scattering term, which arise from resonances between the X-ray and
the atomic energy levels, that is, at the K, L, and (for heavy atoms) M
absorption edges. Variations of/' and/" with X-ray energy are illustrated for
several elements in Fig. 4.6(a). Tabulated values of/' and/" are conveniently
available in the compilation by Sasaki (1988), or they can readily be computed
with the GSAS program (Larson and Von Dreele 1985-94). The positions of the
absorption edges are shown in Fig. 4.6(b), showing that resonant effects from
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Fig. 4.6. (a) Variation of the anomalous scattering factors/' and/" with photon energy
for Bi. (b) Energy of K, L and M edges versus atomic number.

many elements are available in the typical range for powder diffraction
(5-40 keV).

Anomalous scattering amplitudes can be used in two ways for the determi-
nation of structures from powder data: for phasing the reflections and for
distinguishing atoms at specific sites in cases where the atomic numbers are close
or there are mixed occupancies. The principles of using anomalous amplitudes
to phase a powder pattern were described by Prandl (1990, 1994). The concept
is demonstrated in an example of SrSO4 given later in this chapter. In contrast
to the importance of multiple anomalous diffraction (MAD) phasing tech-
niques in macromolecular crystallography, recently reviewed, for example,
by Hendrickson and Ogata (1997), we are not aware of any work where the
determination of phases in a powder data set by anomalous diffraction was
essential to the solution. The latter application, of assigning cation occupan-
cies to disordered sites, is nicely illustrated by two studies of high-temperature
superconductors. Site distributions of specific samples were assigned as
(Tlo.47Pbo.53)(Sri.58Cao.42)(Ca1.94Tlo.o6)Cu309 (TC=118.2K) (Marcos et al.
1994) and (Tl1.72Cuo.28)Ba2(Ca1.86Tlo.i4)Cu3O1o (TC=127K) (Sinclair et al.
1994), based on data collected near several different absorption edges for
each sample.

4.4 Data preparation and indexing

In contrast to the usual procedure for processing laboratory X-ray powder data,
the raw intensity data obtained at a synchrotron source with a scintillation
detector or a linear PSD must first be normalized with respect to the incident



Fig. 4.7. Example of fits to a pseudo-Voigt function illustrating anisotropic peak broadening, x2 is the goodness of fit. From left to right; raw
data; six peaks with the same FWHM (F) and Pseudo-Voigt mixing parameter (77); three peaks with individually-fitted F's and rfs; four peaks with
individually-fitted F's and rj's.



PATTERN DECOMPOSITION, INTENSITY EXTRACTION 61

beam intensity recorded by the monitor, and corrected for dead time losses. It is
important to note that the statistical errors in the observations (usually taken as
the square root of the raw counts) must also be properly scaled, since these will
be required for the weighting scheme used in the subsequent least-squares fitting
procedure. Data obtained with an imaging plate or a charge-coupled detector
do not need to be normalized in this way as long as multiple frames are exposed
on a constant-monitor-count basis, but they do require rather specialized
software for conversion into a form suitable for profile analysis (Hammersley
et al. 1996). At present, there seems to be no standard method for estimating the
observational errors for such data, and unit weights are often assigned.

A careful visual inspection of the pattern should first be made for features
such as (a) sets of weaker peaks that are much broader (or sharper) than the rest,
which may be the signature of an impurity phase, (b) peaks that are split, which
might be indicative of a slightly distorted unit cell, and (c) peaks with a sys-
tematically asymmetric shape, which might reflect slight inhomogeneities in
composition. If the unit cell is not known, the next requirement is a set of 20-30
peak positions suitable for input into an autoindexing program (see Chapter 7).
One of the many advantages of synchrotron radiation is that with a well-
calibrated diffractometer it is routinely possible to determine low-angle peak
positions with an absolute accuracy of 0.002-0.005°, and this greatly improves
the chances of a successful outcome. In many cases, it is quite straightforward to
extract the first 20-30 peak positions from single peaks or small clumps of peaks
in the low-angle region of the pattern. However, ambiguities may arise when the
lineshapes of nearby peaks are found to differ significantly. This might be due to
the superposition of overlapping peaks but could also reflect the presence of
anisotropic microstrain or particle size effects. In such cases, the evolution of
the least-squares goodness-of-fit x values and the difference plots provide
valuable information when fitting clumps of peaks; for example, whether or not
there are extra peaks lurking within the profile. Fig. 4.7 shows (from left to
right) a narrow region of low-angle data collected from a sample with an
unknown structure where clearly there are at least four peaks of varying width; a
very dubious fit to six peaks based on a pseuso-Voigt function with a single
FWHM F and mixing parameter rj; a much-improved fit to three peaks with
individually-refined F's and r/'s; and a further significant improvement with the
addition of a fourth peak at the low-angle end, at which point the low value of
X2 and the lack of structure in the difference plot indicate there is little prospect
of any further improvement.

4.5 Pattern decomposition and intensity extraction

Once the pattern has been indexed successfully, the next step is to attempt to
determine the possible space groups by looking for systematic absences. The
answer is often ambiguous, and one must therefore return to the question of
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possible space groups throughout the process of structure solution. Next, one
must extract as many integrated intensities as possible for structure solution.
This, for the general case where the peak width is a smooth function of d-
spacing alone, is the subject of Chapter 8.

Here, we address the non-ideal case. High-resolution measurements fre-
quently reveal deviations from ideal behaviour, and a number of different
approaches to deal with this problem have been put forward (Le Bail 1992).

Fig. 4.8. See caption opposite.
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Fig. 4.8. (a) Peak widths (FWHM) versus diffraction angle for a sample of sodium para-
hydroxy benzoate. Plotted are both the widths of pseudo-Voigt fits to individual peaks
(circles) and widths to a Le Bail fit of the full profile, using the anisotropic broadening
formalism of Stephens (1999). (b) Portion of the Rietveld refinement of sodium para-
hydroxy benzoate incorporating anisotropic strain broadening (Dinnebier et al. 1999).
(c) Structure of sodium para-hydroxy benzoate determined from powder data, from
Dinnebier et al. (1999). The contours indicate hydrogen atoms, found from Fourier
difference maps.

Many of the attempts at general formulations for this problem, such as
expanding the Caglioti parameters (Caglioti et al. 1958) as ellipsoids in the
three-dimensional reciprocal space, do not respect the symmetry of the reci-
procal lattice, and so cannot claim to correctly model the effect, even though
they may allow the diffractionist to draw a relatively smooth curve through the
data. A commonly observed case is anisotropic strain broadening, in which the
diffraction-peak width increases in proportion to the diffraction order, pro-
ducing a contribution to Sd/d which depends only on the direction in reciprocal
space. (Other cases, such as anisotropic size broadening (see Popa 1998) or
stacking faults are also observed in practice, but will not be discussed here.)
Several authors have developed models to deal with anisotropic strain broad-
ening based on moments of a multi-dimensional distribution of lattice metrics
within a powder sample (Thompson et al. 1987; Rodriguez-Carvajal et al. 1991;
Popa 1998; Stephens 1999). In its general form, this produces contributions to
strain broadening for certain allowed quartic combinations of Miller indices,
which results in a few (2-15) anisotropic strain parameters which can be refined
in a Le Bail or Rietveld fit. This has been incorporated into the Rietveld analysis
package GSAS (Larson and Von Dreele 1985-94). Fig. 4.8(a) shows the widths
of well-resolved peaks as a function of diffraction angle from a sample of
sodium para-hydroxybenzoate, and Fig. 4.8(b) shows a portion of a Rietveld
refinement of the structure of that material (Dinnebier et al. 1999). These illus-
trate that nearby diffraction peaks can differ by a factor of four in their widths,
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and that this phenomenological model of anisotropic strain broadening can
model the effect very well, and is invaluable for analysis of such data. Subse-
quently, Ungar and Tichy (1999) have shown that the same quartic combina-
tions of Miller indices arise from a general treatment of elastic strain caused by
lattice defects, at least in the cubic system. Therefore, this treatment of strain
broadening appears to be more fundamental than its phenomenological roots.

4.6 Systematic errors

As already emphasized, the likelihood of a successful outcome to an ab initio
structure problem depends very much on the accuracy and quality of the
intensity data, and we will now consider some common systematic errors and
how to correct for or avoid them. With care, it should be routinely possible
to collect synchrotron X-ray data with an overall error level no more than
1-2 per cent.

4.6.1 Particle statistics

If the effective sample volume is small and the average size of individual crys-
tallites is large, say > 1 urn, there may not be enough grains satisfying the dif-
fraction conditions for a particular reflection to ensure a proper statistical
powder average (see Chapter 6). Very narrow peak widths comparable to the
instrumental resolution provide an early warning signal of a potential problem,
which in extreme cases can manifest itself in the form of ragged or saw-tooth
peak shapes, but is more likely to escape detection altogether except as indicated
by a lack of success in the structure solution or poor results for the structure
refinement.

Examination by optical and scanning-electron microscopy should give a good
indication of the crystallite size, making allowance for the fact that the latter is
not necessarily the same as the size of the individual aggregates. Another useful
check is to measure the rocking-curves of a few strong reflections with the
detector fixed at the peak position; fluctuations of more than 20 per cent are an
indication of possible trouble ahead. Problems of this type can almost always be
eliminated by the use of capillary samples which are rotated at several Hz, but if
this option is not a viable one, the sample should at least be rocked through
several degrees during data collection. The volume of sample exposed to the
incident beam should be optimized by choosing a suitable wavelength with due
regard for absorption edges (typically in the range 0.4-1.3 A), selecting an
appropriate diameter for the capillary (a useful rule-of-thumb is fj,R(p/p0) < 2.5,
where p/pQ is the packing fraction), and using as wide a horizontal aperture for
the beam as is practicable. If absorption considerations make it necessary to use
flat-plate samples, the latter should be spun (along the sample normal) if pos-
sible, or rocked through a range of a few degrees about the symmetric position.
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Imaging plates can also be used to overcome the problem of inadequate
particle statistics, because the intensity can be integrated over the whole Debye-
Scherrer ring, or at least a large segment of it. This technique is especially well-
suited for very small samples, and is widely used for structural studies at high
pressure in diamond-anvil cells, but generally yields data with more modest
resolution and peak-to-background discrimination. Another technique to obtain
a better powder average from a marginal sample is to use a Gandolfi spinner
with a small (say 1 mm x 1 mm) X-ray beam. A more drastic remedy is to fur-
ther grind the sample, but this should be done very carefully to avoid unwanted
consequences such as degradation of the peak shapes and widths, the formation
of disordered regions or extended defects, or even partial transformation into a
second phase.

4.6.2 Preferred orientation

The presence of significant preferred orientation effects is often a conse-
quence of using flat-plate geometry, which should normally be avoided if a
preliminary microscopic examination indicates a platy or acicular crystal habit.
Debye-Scherrer (capillary) geometry is superior in this respect, since preferred
orientation effects are vastly reduced. Nevertheless, as pointed out in Chapter 9,
in some cases it may be possible to take advantage of preferred orientation in
crystal structure solution, and these specialized techniques of data collection
should not be ruled out.

4.6.3 Absorption

When capillary geometry is used, a correction for absorption should be made if
the effective value of /j,R > 1. If uncorrected, absorption effects are likely to lead
to a negative overall thermal parameter (Hewat 1979). For larger values, a
correction can be made by parameterization of the transmission factors in the
International Tables (Maslen 1995); either Chebyschev polynomials (Toby
1997) or double Gaussian functions analogous to those used for scattering
factors are suitable for this purpose. In order to make this correction, the
packing density must be estimated, or better still, determined from direct
measurements of the weight and dimensions of the sample (the latter procedure
is strongly recommended not just for structure solution but for all studies
involving capillary samples). If absorption corrections are made carefully,
negative thermal factors should not be obtained.

For ideal flat-plate samples, the absorption factor is /j,/2 independent of 20
and no correction is necessary. However, for very granular and highly-
absorbing materials there could be a significant reduction in intensity at low
scattering angles due to surface roughness as discussed by Suortti (1972), and
careful attention should be given to the preparation of flat-plate specimens of



66 SYNCHROTRON RADIATION POWDER DIFFRACTION

this type and the choice of wavelength, since there is no a priori way to correct
the raw data for this kind of microabsorption effect.

4.6.4 Extinction

Although extinction effects are seldom considered in the analysis of X-ray
powder data, they can be surprisingly large in highly-crystalline materials such
as diamond and silicon, especially at longer wavelengths. If an examination by
optical or electron microscopy reveals crystallites that are several microns in
size, the wavelength chosen for the experiment should be short enough to
eliminate possible extinction effects based on an order-of-magnitude estimate
from the expressions given by Sabine (1993), because there is no a priori method
to correct the data for effects of this type either.

4.7 Examples of structure solution

This book contains many examples of structure solutions that have utilized
synchrotron data. Rather than present a comprehensive review of recent results
obtained using the powerful and rapidly-evolving techniques in SDPD, we have
chosen problems that highlight the specific areas where synchrotron radiation
has made a key contribution. The earliest crystal structure determinations from
synchrotron powder diffraction data were of inorganic materials, such as
a-CrPO4, MnPO4 • H2O, A12Y4O9 and I2O4. Since then, a full range of materials,
including inorganics, organics, organometallics, microporous compounds,
hydrates, fullerenes, etc., have yielded to the power of synchrotron radiation.
Table 4.1 summarizes the lattice parameters and number of atoms in the irre-
ducible cell for those mentioned in this chapter.

4.7.1 Pioneering studies

4.7.1.1 a-CrP04

The first example of a structure solved from synchrotron data (a-CrPO4,
Attfield et al. 1986, 1988) is discussed in Chapter 2 and the techniques employed
in this work set a pattern that was to be followed for several years.

4.7.1.2 MnP04-H20

The unit cell of MnPO4 • H2O (Lightfoot et al. 1987) was determined by auto-
indexing from 20 reflections using the program of Visser (1969). A figure of
merit M20 of 196 indicated unambiguously that the correct unit cell had been
found. Such high figures of merit are not unusual with synchrotron studies,
because the peak positions are determined so accurately. Systematic absences
indicated the space groups Cc or C2/c and a Patterson map calculated from



Table 4.1 Summary of examples discussed in this chapter. NA refers to the number of independent atoms, and NC to the number of refined
positional parameters

Compound

a-CrPO4

MnPO4 • H2O
A12Y4O9

I204

BeH2

Sigma-2
SrSO4

5-aminovaleric acid
C6F6:C6D6

Norbornane
RS-camphor
S-camphor
C24H1607

Beryllophosphate-H
LiZnPO4

Na4Ti2Si8O22 • 4H2O
UiO-7
NH4-VPI-9
Rb-VPI-9
NaCD3

RbCsHsI
RbCsHs II
/3-haematin
Mg6Co2Hn
Ga2(HPO3)3 • 4H2O
La3TisAllsO37

(CH3)2SBr2

(CH3)2SBr2.s
(CH3)2SBr4

Zn Insulin T3R3DC

Space group

Imma
C2/c
P21/c
P2l/c
Ibam
I4i/amd
Pnma
Pna2i
P2i/a
P21/m
Cm cm
P212121

P-l
P321
Pn2ia

P42i2
Pbca
P42/«cm
P4A2
7222
Pnma
Pbcm
P-l
Pnma
P2l

Cc
P2l/a
Cmca
P2i/a
R3

NA

8
6

15
6
4

17

8
12
4

11
22
31
25
10
8

30

57
11
4
8

41
24
29
60
5
7
7

1630

Nc

13
11
45
18
7

33

23
36
11
33
66
93
63
30
16
90

165
29
10
19
14
63
87

178
15
17
21

4893

a (A)

10.4058(1)
6.912(1)
7.3781(1)
8.4879(2)
9.082(4)

10.2387(1)
8.361

17.358(7)
9.4951(3)
5.9365(3)
6.8341(2)
9.9276(1)

11.044
12.5815(4)
10.0207(2)
7.3673(1)

14.533(3)
9.8946
9.8837(1)
6.7686(1)

10.7990(2)
9.3396(1)

12.196(2)
8.1000(2)
8.0947(2)

22.5655(3)
11.4090(1)
21.9676(2)

9.0381(1)
81.278

ft (A)

12.8995(1)
7.470(1)

10.4735(1)
6.7010(2)
4.160(2)

5.352
4.523(2)
7.4235(2)
9.6818(1)

11.6585(4)
27.0636(3)
11.730

6.6731(2)

15.334(6)

18.6016(4)
8.6923(2)

10.9666(1)
14.684(2)
10.0643(2)
10.0336(2)
10.9863(2)
7.3819(1)

11.1972(1)
11.6589(1)

c(A)

6.29933(6)
7.357(1)

11.1253(1)
8.3407(2)
7.707(3)

34.3829(1)
6.871
7.447(3)
7.5262(2)
5.7116(3)

11.5000(3)
7.3815(2)
7.371

12.4508
4.96548(8)

10.6998(1)
16.601(4)
36.8715
73.6505(6)

6.5762(1)
5.7061(2)

10.5490(1)
8.040(1)

18.5664(4)
7.6711(2)
9.7189(1)
7.4510(10

11.0531(1)
8.8859(1)

73.0389

/3(°)

112.3(1)
108.540(1)
124.713

95.630(2)
116.356(5)

triclinic

triclinic

111.392(2)
98.569(2)
92.824(1)

90.134(1)

K(A3)

845.6
351.4
815.1
390.0
291.2

3604.4
307.5
584.7
527.9
294.2
916.3

1783.2
937.5

1706.9
332.0
580.8

3699.8
3609.8
7194.7

828.0
535.6

1080.5
1416
1513.5
580.1

2382.5
626.8

2718.8
936.3

417860
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61 extracted intensities showed the location of a Mn atom. Subsequent differ-
ence Fourier maps revealed the remaining non-hydrogen atoms and hydrogen
was positioned after refinement of the structure on the basis of bond-length
and bond-strength calculations. In the final cycles, the hydrogen was allowed
to refine unrestrained, resulting in an O-H bond length of 1.00(4) A and an
H-O-H angle of 100(1)°. The water content of one molecule per formula unit
differs from the previously assumed composition of this phase (1.5 H2O), but is
in agreement with TGA measurements. The octahedrally coordinated Mn(III)
ion has a marked Jahn-Teller distortion, in contrast to those observed in
various related MnSO4 • H2O structures.

4.7.1.3 A12Y409 and I2O4

The structures of A12Y4O9 and I2O4 were solved from data collected with a
small linear PSD (Lehmann et al. 1987). A12Y4O9 is isostructural with
Al2Eu4O9, so a good estimate of the unit cell and space group was available as
prior information. From 573 reflections extracted by a Pawley refinement, 252
with |F > 30- were used with the Direct methods program MULTAN77 to
reveal the positions of the four Y atoms. Least-squares refinement followed by
the calculation of a Fourier map revealed the locations of the nine O and two Al
atoms. In the case of I2O4, a probable unit cell and a space group were known
from Guinier measurements. Pawley refinement of the data gave 157 reflections
with |F > 3cr and the two I atoms were located from a Patterson map and by
the program MULTAN. Fourier maps based on the intensities extracted by
the Pawley refinement were very noisy, but after Rietveld refinement with just
the two I atoms, the four O atoms could be found easily. The structure was
confirmed by a refinement using neutron diffraction data.

4.7.1.4 BeH2

The structure of BeH2 (illustrated in Fig. 4.9) was solved without any prior
knowledge (Smith et al. 1988), via autoindexing, space-group identification
from systematic absences, and then the calculation of the Patterson map. Two
Be atoms were identified, and the hydrogens were positioned using a trial-and-
error approach. The structure is composed of a network of corner-sharing BeH4

tetrahedra, rather than hydrogen-bridged chains as previously suggested. The
crystal-analyser geometry allowed a relatively large capillary to be used
(0.7 mm) without any loss of resolution, so more of the weakly scattering sample
could be placed in the beam.

4.7.1.5 Sigma-2

The first microporous structure determined from synchrotron data was that of
the 17-atom clathrasil Sigma-2 reported by McCusker (1988). With a series of
programs assembled for the task, peaks positions were identified and the pattern
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Fig. 4.9. View of the structure of BeH2 showing the network of corner-sharing BeH2

tetrahedra (Smith et al. 1988).

indexed using TREOR (Werner et al. 1985). Systematic absences showed the
space group to be I4imd, I42d or I4i/amd, and the latter centrosymmetric space
group was assumed on the basis of intensity statistics. Two hundred and fifty-
eight reflections extracted by the Pawley method were used as input to the
single-crystal package XTAL, and all four Si atoms and five of the eight O
atoms were correctly located. The three remaining framework O atoms were
located in a difference Fourier map. Following Rietveld refinement of the
structure, the disordered organic template was located in the large cage. The
large and small cages that characterize the structure had not been encountered
previously in microporous materials.

4.7.1.6 SrSO4

In a recent paper, Prandl (1994) proposed a method for ab initio structure
solution based on partial Patterson maps of anomalous scatterers derived from
powder data collected at three wavelengths, two close to an absorption edge and
one off-edge. This is analogous to the well-known multiple anomalous disper-
sion method widely used in protein crystallography, but differs insofar as the
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Fig. 4.10. Maximum-entropy reconstruction of partial Patterson maps for Sr atoms in
SrSO4 obtained from anomalous scattering measurements, showing three sections at
different heights z along the c-axis (Burger et al. 1998).

Bijvoet pairs of reflections are coincident in a powder pattern. As a demon-
stration test of this proposed technique, data were collected from a reference
sample of SrSO4 at wavelengths of 0.7702, 0.7820 and 1.1294 A, that is, about
13, 256 and 5132eV below the Sr K-edge (Burger et al. 1998). Diamond dust
was added to the sample as an internal standard in order to scale the data on an
absolute basis in the subsequent derivation of the partial Patterson maps, which
are shown in Fig. 4.10. From the latter, the coordinates of the Sr atom were
readily determined as (0.16, 0.25, 0.19) and used to complete the structure
determination from the off-edge data set. A key feature of this work was the use
of maximum entropy methods to allow both overlapped and non-overlapped
peaks to be used in the reconstruction of Patterson maps, which were as free of
noise and truncation effects as possible. This technique might prove to be useful
in cases where conventional methods of structure solution have failed, but
clearly requires very accurate data and careful attention to experimental details.

4.7.2 Organic compounds

The crystal structures of organic compounds are often more difficult to solve
than inorganic structures. This is because there is usually no heavy atom present
for identification in a Patterson map, to provide phasing of the reflections,
and the scattering is usually weak, especially at the higher angles essential for
Direct methods. Furthermore, the crystallinity can be poorer, leading to peak
broadening and hence, more problems for indexing and extracting individual
intensities from overlapping reflections. On the other hand, the molecular
structure is usually well known and this can be put to good use, once a unit
cell has been determined, by considering the most efficient packing of the
molecules.

In studies of organic materials, it is often necessary to use either a deep flat-
plate sample or (preferably) a fat capillary, 1-2 mm in diameter. Thin flat-plate
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samples are not normally suitable as there is a very strong tendency for pre-
ferred orientation. Thin capillaries are quite difficult to fill, particularly when
the materials are hygroscopic, waxy, or electrostatically charged. Use of an
analyser crystal or Seller collimators is therefore essential, in order to avoid large
peak shifts caused by specimen transparency with the deep flat-plate sample, or
to avoid the broad peaks that would arise using a conventional receiving slit
with a fat capillary.

4.7.2.1 5-aminovaleric acid

5-aminovaleric acid (NH2(CH2)4CO2H) was solved from data collected using a
cylindrical imaging-plate system (Honda et al. 1990). The data were recorded in
only 6 min, digitized, and reduced to the equivalent one-dimensional scan up to
65° in steps of 0.01° of 20. The fact that FWHM of 0.07° is not particularly
narrow when compared with standard synchrotron diffractometers operating
with Debye-Scherrer slits or an analyser crystal did not preclude structure
solution via a combination of Patterson maps, trial-and-error C-C chain
positioning and difference Fourier maps. It is particularly impressive that a
full structure can be obtained from data collected in such a short time.

4.7.2.2 C6H6-C6F6 adduct

The solid adduct that forms between benzene and hexafluorobenzene at room
temperature undergoes three phase transitions, at 272, 247.5 and 199K. The
ambient structure of phase I was solved from single-crystal data and comprises
cylindrically disordered columns of alternating benzene and hexafluorobenzene
molecules (Overell and Pawley 1982) held together by the quadrupole moments
of the two molecules, which are of opposite sign. The phase transitions are
associated with ordering of the columns, and large volume changes lead to the
fracture of single crystals. Powder diffraction patterns of phases II, III, and IV
were all indexed, with figures of merit greater than 200 (Willliams et al. 1992).

The monoclinic cell of the lowest temperature phase IV was indexed despite
the presence of some weak peaks attributable to residual phase III arising from
the sluggish phase transition (even low levels of such impurities are generally
easily observed with synchrotron data). Intensities extracted by the Le Bail
method were input to the single-crystal program SIR88, which solved the com-
plete non-hydrogen structure comprising six C and three F atoms. The struc-
ture, shown in Fig. 4.11, was refined by the Rietveld method, but the presence of
the phase III impurity led to a somewhat high value for Rwp. A deuterated
sample had also been measured by neutron diffraction, and refinement of the
X-ray structure using this pattern, which contains very little phase III, gave a
satisfactory fit. The structure of phase III was subsequently deduced (Cockcroft
1995) in conjunction with the neutron data using the triclinic cell determined
from the synchrotron study.
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Fig. 4.11. View down the columns of alternating benzene and hexafluorobenzene
molecules in the lowest-temperature phase IV of the solid adduct. The molecules appear
to be intermediate between a staggered and an eclipsed configuration (Williams et al.
1992).

4.7.2.3 Bicydics
Bicyclic molecules frequently have orientationally disordered cubic or hex-
agonal structures under ambient conditions, but order at low temperature under
the influence of the weak steric and van der Waals interactions between mole-
cules. The low-temperature structures of two such systems, norbornane (bicyclo
[2.2.1] heptane—C7H12) (Fitch and Jobic 1993), and RS-camphor (Ci0H16O)
(Mora and Fitch 1997) were solved from synchrotron data. In each case, unit
cells were readily obtained by autoindexing, but attempts to solve the structures
by Direct methods were not successful.

The norbornane molecule has mm2 symmetry (C2v) and it is apparent that
there are two molecules per unit cell. Alignment of one of the molecule's mirror
planes with the mirror plane of the most probable space group (P2i/m) was
followed by manual manipulation of the molecule's position within the unit cell
in an effort to generate a calculated diffraction pattern resembling the observed
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one—a process of 'manual global optimization'. Once the correct mole-
cular mirror plane had been selected, satisfactory agreement was eventually
obtained.

For RS-camphor, which is an equimolar solid solution of enantiomeric
molecules, the apparent space group is Cmcm, which has 16 general (x,y,z)
positions. The number of molecules per unit cell is four, implying a residual
disorder of the molecules, because they have symmetry 1. The output from
SHELXS indicated fragments of molecules in the vicinity of the (0, 1/4, ~0.25)
position with symmetry m2m, but no clear picture was obtained. The correct
orientation of the molecule was obtained by a grid search of all possible mole-
cular orientations, centred at (0,1/4, ~ 0.25) using the Rietveld method to assess
the models. In the refinements, the molecule was also given freedom to move
its centre away from (0, 1/4, ~ 0.25). From an initial search of orientational
space using coarse 10° steps, successively finer steps were used around the
orientation that gave a minimum in Rwp until the correct molecular orienta-
tion was clear. The structure has fourfold disorder in the position of the
molecule. Twofold disorder comes from the superposition of the two enantio-
meric forms of the molecule, with each possessing an additional twofold ori-
entational disorder.

More recently, the structure of the pure enantiomeric form of camphor in the
ordered, lowest-temperature phase was solved. A powder pattern was collected
from a spinning capillary cooled to 100K and the pattern indexed with an
orthorhombic cell. The volume of the unit cell (V= 1782 A3) indicates that there
are eight molecules per cell, hence two molecules in the asymmetric unit for the
most probable space group P212121. Attempts to solve the structure by using the
Direct methods package EXPO (Altomare et al. 1999) to locate the 22 non-
hydrogen atoms constituting the two independent molecules were not success-
ful. In contrast, global optimization using simulated annealing as implemented
in Powder Solve (Engel et al. 1999) returned the correct structure after a 10-day
run on a Silicon Graphics O2 computer, utilizing 1.1 x 10s cycles of simulated
annealing, performed in two distinct steps. In the first SA runs, both molecules
were allowed to rotate and translate independently, but no structure solution
was obtained. In the second round of annealing, the molecular locations were
fixed (in a sense emulating the approach used for the racemic solid solution) and
only their orientations allowed to vary. This second SA run improved the match
between the calculated and the observed diffraction pattern significantly and a
subsequent Rietveld refinement of this solution converged rapidly, indicating
this to be the correct structure for S-camphor.

4.7.2.4 Fluorescein diacetate

Fluorescein diacetate, C24H16O7, contains five connected aromatic and alicyclic
rings. A high-resolution diffraction pattern, collected from a spinning 1.5mm
capillary at room temperature, could be indexed with a triclinic cell with a
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volume indicative of two molecules in the cell. Structure solution using EXPO
(Altomare et al. 1999) and SIRPOW (Altomare et al. 1995) failed to find a
sensible solution. Accordingly, the diffraction pattern was recollected at 100 K
and the high-angle region of the pattern scanned twice as often as the low-angle
region to improve the statistical quality of the high-angle data. Again, structure
solution attempts failed until the 'fwhm' parameter (which controls whether
adjacent reflections are considered to be overlapping or not) was increased
from its default value of 0.1 to 0.2. At that point, 14 atoms appeared in a
solution that had a combined figure of merit of 0.988. Subsequent cycles of
Fourier synthesis and refinement yielded the complete molecular structure, with
carbon and oxygen atoms correctly assigned and bond distances to within about
0.1 A of the values expected (Knudsen et al. 1998). The packing of the fluor-
escein diacetate molecules in the crystal reveals a network of intermolecular
C-H • • • O hydrogen bonds, 10 per molecule, holding the structure together
(Fig. 4.12).

Fig. 4.12. View of the crystal structure of fluorescein diacetate as solved from powder
data using Direct methods. The two molecules shown are related by inversion (Knudsen
et al. 1998).



EXAMPLES OF STRUCTURE SOLUTION 75

4.7.3 Microporous materials

A number of impressive structures of microporous materials have been solved
using synchrotron radiation.

4.7.3.1 Beryllophosphate-H

Beryllophosphate-H, NaKBe2P2O8 • 3H2O, in which sodium and potassium
cations balance the negative charge of the microporous beryllophosphate fra-
mework (Harvey et al. 1992), was indexed on a hexagonal unit cell with no
systematic absences. Due to the multitude of possible space groups (16), no
attempt was made to solve the structure using Direct methods. Rather, the
similarity of the lattice parameters to those of MAPSO-46 was used to solve the
structure. The unit cell for MAPSO-46 was halved along c and its c-glide
removed to give space group P321, and the calculated powder diffraction
pattern of that model matched the observed pattern. The framework was then
optimized by distance least-squares refinement. After Rietveld refinement with
restrained framework bond lengths and angles, the two Na and two K atoms
were located from difference Fourier maps, along with disordered water
molecules.

4.7.3.2 LiZnPO4

LiZnPO4 is one of a number of novel materials that are formed between the
alkali metals, zinc, phosphate and water. It may be formed by dehydration of
the monohydrate, or synthesised directly (Harrison et al. 1995). After deduction
of the unit cell and space group (Prilid) from a combination of lab, synchrotron
and second-harmonic-generation measurements, attempts to transform the
framework of LiZnPO4 • H2O via a displacive non-bond-breaking procedure
proved unsuccessful. In contrast, a Direct methods solution using 342 \F\2

values as input to SHELX-86 revealed the positions of the Zn and P atoms.
Structure completion and refinement followed along conventional lines. The
structure deduced in this study confirms that dehydration of LiZnPO4 • H2O
leads to the breaking and remaking of Zn-O-P linkages, transforming
a framework that contains 4-, 6- and 8-rings into one that has only 6-rings, but
maintaining the alternation of ZnO4 and PO4 units. This is unusual behaviour,
as dehydration in microporous compounds normally proceeds with only small
distortions to the framework, though rearrangement of cations is frequently
encountered.

4.7.3.3 Na4Ti2Si8O22-4H2O

Titanosilicates are often good catalysts, and are of particular importance in the
petrochemical industry. A novel compound, of composition Na4Ti2SigO22 •
4H2O, synthesised hydrothermally, was solved via autoindexing, Le Bail
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decomposition, and Direct methods using SHELX-86 (Roberts et al. 1996). The
solution, in the non-centrosymmetric space group P42i2, confirmed EXAFS
results that had suggested five-fold coordination of Ti by oxygen, in a square-
pyramidal coordination, with the apical oxygen having a shorter Ti-O distance.
The structure is layered, and is a double-sheet titanosilicate, in contrast to
fresnoite which has single sheets.

4.7.3.4 Aluminophosphate UiO-7

The high-resolution powder diffraction pattern of the aluminophosphate UiO-7
was indexed using TREOR90 on an orthorhombic cell, with systematic
absences suggesting the space groups Pbcm or Pbc21 (Akporiaye et al. 1996). An
approach to solving the structure via model building, based on intuitive
knowledge from known-framework topologies, failed to produce structures
consistent with the data. However, an approach using simulated annealing
(Deem and Newsam 1989) based on structural knowledge about four-connected
networks combined with the symmetry restrictions imposed by the space group
was successful. Framework topologies are generated and then ranked in terms

Fig. 4.13. View of the structure of UiO-7 (Akporiaye et al. 1996).
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of a figure of merit, by applying a penalty factor based on deviations from
prescribed connectivities, bond lengths and angles, and site occupancies. The
match with the observed diffraction data is also included. Information required
in the procedure includes the number of tetrahedral atoms in the unit cell NT
and in the asymmetric unit TV;/. The former was obtained from the known
relationship of the framework density and the micropore volume obtained from
the water adsorption isotherm, and the latter was obtained from analysis of the
31P and 27A1 MAS NMR spectra, yielding the most likely value as 6, but with 8
or 4 also as possibilities. A solution with a high figure of merit was found only
for Nu=4, in space group Pbcm. However, to obtain P and Al ordering, the
unit cell must be doubled along a and the space group changed to Pbca.
The structure (Fig. 4.13) was completed by Rietveld refinement, and the loca-
tion of the organic template was determined from Fourier maps. The final
refinements included 30 atoms. This is the first published use of the simulated
annealing approach for the solution of a completely unknown framework
topology.

4.7.3.5 VPI-9
Following optimization of the sample preparation to obtain a pure phase and
ammonium ion exchange, the unit cell of the zincosilicate VPI-9 was indexed
definitively from synchrotron data on a tetragonal unit cell with a = 9.8946 A
and c = 36.8715 A in the space group P42\ncm (McCusker et al. 1996). The
unit cell of the as-synthesised Rb-containing material has a doubled c para-
meter, so structure solution was not attempted with those data. The structure
of the ammonium form was solved using a new approach (FOCUS) in which a
large number of electron density maps were generated from the extracted
integrated intensities, with randomly assigned phases. These were subjected to
a Fourier recycling procedure combined with a search for a three-dimensional
4-connected framework with appropriate bond distances and angles (see
Chapter 17). The framework identified has seven tetrahedral sites (T-sites), and
initial Rietveld refinements indicated that the correct structure had been found.
This represents one of the most complex zeolite-like structures solved from
powder data using an automated procedure.

The refinement was not pursued, as it was apparent that the exchange of
NH4+ for Rb+ was incomplete. Refinement was therefore attempted for the
as-synthesized Rb-analogue. Doubling the c-axis leads to the space group
P4i2i2 and requires 15 tetrahedral and 30 oxygen atoms. The distribution of Zn
atoms could not be obtained by refining the T-site occupancies. Therefore zinc
atoms were placed in the 3-rings, because this is where they are found in related
zincosilicates, and the population parameters of just these nine T-sites were
refined, starting from population parameters corresponding to 2/3 Si and 1/3
Zn. Refinement of this model led to localization of Zn into three pure sites in
the 3-rings. The channel contents were obtained from Fourier maps whose
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interpretation relied on chemical considerations. The final structure involves
59 atoms (45 of which describe the framework) and 170 structural parameters.

4.7.4 Organometallics

4.7.4.1 NaCD3

The complementary use of synchrotron X-ray and neutron data to solve a
structure is illustrated by the case of deuterated methylsodium, NaCD3 (Weiss
et al. 1990). Neutron data were collected and the pattern could be indexed as
body-centred orthorhombic (a = 6.7686A, b= 18.6016A, and c = 6.5762A).
Due to the similarity between a and c, it was not possible to resolve reflections
adequately to assess with confidence whether any systematic absences other
than those required for body centring were present. A synchrotron data set
showed clearly that no extra extinction conditions applied, indicating space
groups 7222, I2\2\2\, Imrril, Irrilm, Im22, or Immm. The latter is centrosym-
metric and was excluded on the basis of intensity statistics. Using SHELX-86,
each space group was investigated, and a sensible non-hydrogen-atom structure
obtained in 7222. There are three crystallographically distinct Na atoms and
two C atoms in the structure. The six distinct D-atom positions were obtained
from the neutron diffraction data. Half the ions are arranged in (NaCD3)4

tetramers with the D atoms staggered with respect to the three neighbouring
sodium ions, (similar to methyllithium). The remaining Na+ ions are arranged
in zig-zag chains and the remaining CD^ ions interconnect the tetramers via
Na-C contacts. The structure, therefore, appears to be intermediate between
that of methyllithium and methylpotassium, in which discrete ions are present.

4.7.4.2 RbC5H5

The high resolution of a synchrotron radiation experiment was instrumental in
the solution of the structures of two polymorphic phases of RbCsHs present in a
single sample (Dinnebier et al. 1997). Noting that the low-angle peaks fell into
two families (Fig. 4.14) the authors were able to index the two sets of peaks
separately. Thereafter, SIRPOW92 gave direct solutions of the two different
structures, the first in space group Pbcm (a = 9.3396 A, b =10.9666 A, c =
10.5490 A) and the second in Pnma (a = 10.7990 k,b = 8.6923 A, c = 5.7061 A).
Both phases have polymeric zig-zag chains consisting of an array of bent Rb-Cp
sandwiches (Cp = cyclopentadiene, C5H5). The first has two independent chains
perpendicular to each other running along b and c, whereas the second has a
single type of chain, running along the a-axis.

4.7.4.3 13-haematin

Another recent application of powder diffraction to organometallic compounds
relates to malaria, a disease that kills more than a million people annually. The
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Fig. 4.14. Diffraction peak width versus angle 20 from a sample comprising two
polymorphs of RbC5H5. The smooth curves represent the fitted FWHM from the final
Rietveld refinements. Crosses represent groups of peaks that were not visually resolved in
the raw data (Dinnebier et al. 1997).

Fig. 4.15. Structure of /?-haematin (malaria pigment) determined from powder X-ray
diffraction. Formation of dimers, by the inversion operation within each triclinic cell,
occurs through the Fel-O41 bond, whereas dimers are linked into chains by hydrogen
bonds through O36 and O37. All other hydrogens are omitted for clarity. From Pagola
et al. (2000).
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haem groups released from the digestion of haemoglobin of malaria-infected
red blood cells are aggregated into an insoluble material called haemozoin or
malaria pigment. It is suspected that the antimalarial action of quinoline drugs
is associated with an inhibition of growth of haemozoin crystals in the digestive
vacuole of the malaria parasite Plasmodium. /3-haematin is a synthetic analogue
of malarial haemozoin, known to be chemically and crystallographically iden-
tical, but available in powder samples with higher crystallinity. The structure
was solved using the simulated annealing program PSSP. Previously, it had
been believed that haemozoin was a coordination polymer, but in fact, the
structure turned out to be a novel dimer of reciprocally esterified porphyrin
rings (Fig. 4.15).

4.7.5 More difficult problems

With the exception of some of the structures of microporous materials described
above, most solutions are of structures containing less than 20 crystal-
lographically distinct atoms. To go further requires samples (and instru-
mentation) of the highest quality to yield data with narrow peaks throughout
the whole angular range: at low angles for indexing, and at higher angles for
accurate profile decomposition. Even then, structures are still usually solved in
several steps, though this is changing with the advent of global optimization
methods (see Chapters 15 and 16).

4.7.5.1 Mg6Co2Hn

The diffraction pattern of Mg6Co2Hn was indexed from Guinier photographs,
taken with CoKo^ radiation (Cerny et al. 1992). A few weak peaks were
incompatible with the C-centred orthorhombic cell. To check for the presence of
a superstructure, synchrotron data were recorded, and these indicated a
quadrupling of the cell along a, yielding Pnma as the true space group. The
synchrotron data were collected at three wavelengths close to the Co K edge, so
that the changes in the values of /' and /" could be used to provide better
contrast between Co and Mg atoms. The structure was solved in the C-centred
orthorhombic subcell, from Patterson and Fourier maps, using the contrast
provided by the resonant scattering of Co. There are two Co and eight Mg sites
in the full structure. Positions for hydrogen atoms were located from neutron
diffraction measurements on a deuterated specimen. Twenty possible sites for D
were identified by assuming minimum Co-D and Mg-D distances of 1.55 and
1.90 A, respectively. Refinement showed that 14 of these sites are occupied. The
final refinements used neutron and synchrotron data simultaneously. One Co
atom has four D ligands, and the other has four or five D ligands because one of
the five surrounding sites is half occupied. The structure is therefore partially
disordered, and has a three-to-one mixture of [CoD4]

5~ and [CoD5]
4~ complex
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anions, with the limiting ionic formula

4Mg6Co2Dn = 5MgD2 • 19Mg2+ • 2[CoD5]
4~ • 6[CoD4]

5~.

This description implies that the compound conforms to the 18-electron rule.

4.7.5.2 Ga2(HP03)3-4H20

Another example where neutron diffraction was used to complete a structure
whose heavy-atom structure was solved from synchrotron data is Ga2(HPO3)3 •
4H2O (Morris et al. 1992). A monoclinic unit cell was determined by TREOR
from laboratory powder diffraction data. Thermogravimetric analysis and the
observation of three distinct P sites from 31P MAS NMR, led to a postulated
composition of Ga2(HPO3)3 • 3H2O. Systematic absences in the synchrotron
data were indicative of a two-fold screw axis, which, when combined with SHG
measurements, indicated P2j. Following a Le Bail extraction of the intensities,
the two Ga atoms were located by Direct methods using SHELX-86. After
structure completion using Fourier synthesis, Rietveld refinement and mole-
cular modelling, the final structure, comprising 29 atoms, was refined against
the neutron data.

4.7.5.3 La3Ti5Al15O37

The laboratory X-ray pattern of La3Ti5oAl15O37 was indexed in space group
C2/c or Cc with a = 22.54 A, b =10.97 A, c = 9.67A, and /3 = 98.49° (Morris
et al. 1994). The intensities were extracted from the high-resolution synchrotron
data using the Le Bail method and input to MULTAN84. The positions of the
three La atoms and two of the Ti atoms were found in Cc. No sensible solution
was found in C2/c. Difference Fourier maps revealed nine more metal atoms
(assigned to Al) and 27 oxygens. No more atoms could be found with the X-ray
data, so neutron data were collected. Following Rietveld refinement using the
partial model, ten O and seven more Al atoms were located by difference
Fourier synthesis. Following reassignment of one of the Al atoms designated
with the X-ray data as Ti, the remaining two Ti atoms were located in a Fourier
map. The structure has 60 atoms in the asymmetric unit. The final Rietveld
refinement was performed using two neutron diffraction patterns simulta-
neously. They were collected using different monochromator crystals (Cu (311)
and Si (531)) and wavelengths to adjust the optimum resolution to different
parts of the diffraction pattern. Restraints were applied to the tetrahedrally
coordinated Al atoms to improve the stability of the final refinement. This is one
of the most complex structures solved from powder diffraction data to date.

4.7.5.4 (CH3)2SBr2

(CH3)2SBr2 was believed to exist in a stable and a metastable form, depending
on the method of preparation. Over a period of time, the metastable form
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transforms into the stable form as monitored by infrared and Raman spectro-
scopy. The stable and metastable compounds appear to correspond to a charge-
transfer form, (CH3)2S —>• Br2, and an ionic form, (CH3)2SBr+Br~, respectively.
The crystal structure of the stable form was solved via Direct methods from
synchrotron data in space group Fl\\a, with a unit-cell volume of 628 A3 (Mora
et al. 1996). The structure confirmed the postulated charge-transfer nature of
the bonding to the bromine molecule giving a near-linear S-Br-Br angle.

In contrast, the high-quality diffraction data collected from the metastable
form (Fig 4.16) could not be indexed as a single phase despite concerted efforts.
The pattern was eventually indexed as a mixture of two phases using TREOR.
By running the program many times, systematically increasing the maximum
values of the unit-cell lengths and volume, and allowing a large number of
unindexed reflections, but imposing a stringent condition on the agreement
between observed and predicted peak positions, a monoclinic cell with a high
figure of merit (M20 = 122) was eventually obtained. Removing the peaks pre-
dicted by this cell led to a subset of reflections that could also be indexed with
M20 of 198 (Vaughan et al. 1999).

One phase is monoclinic (unit-cell volume of 936 A3) and the other is
orthorhombic (unit-cell volume of 2719 A3). Both crystal structures were solved
using Direct methods. The orthorhombic phase corresponds to an ionic form,
but with additional bromine molecules in the structure whose presence was
not anticipated, giving a composition of (CH3)2SBr2.5. The monoclinic phase
resembles the charge-transfer form, and the structure also contains additional
bromine atoms, giving (CH3)2SBr4. Thus, the overall nature and composition

Fig. 4.16. Part of the Rietveld fit to the synchrotron X-ray diffraction pattern of the two
metastable forms of (CH3)2SBrx. From Vaughan et al. (1999). The positions of the peaks
from the two phases illustrate how interwoven the two patterns are.
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are quite different from those expected from the sample preparation. The true
character of this sample was learned only when the structures were solved, and
it is clear that data of the highest quality was required for this success.

4.7.5.5 Human insulin-zinc complex

The structure of human insulin-zinc complex, is truly enormous relative to the
small-molecule crystallography usually practised with powder diffraction.
Motivated by the observation that powders of protein crystals often have very
sharp peaks, indicating crystallite size of ~1 um and negligible micro-strain,
Von Dreele (1999) has adapted the data analysis techniques used in protein
crystallography into the Rietveld package GSAS. In practice, the number of
stereochemical restraints exceeds the number of points in a diffraction profile.

In an investigation of the human insulin-zinc complex by powder diffraction,
it was discovered that grinding crystals of the well-known T3R3 Zn-insulin
complex in mother liquor produced a transformation to a new structure,
dubbed T3R3DC. The biologically active insulin unit consists of an AB pair of
polypeptide chains. The T3R3 Zn-insulin complex is rhombohedral, in which the
hexagonal cell contains three (AB)2 dimers (810 non-H atoms per dimer,
excluding solvent). Upon grinding, the hexagonal axis approximately doubles,
although the molar cell volume decreases by 2.1 per cent. The structure solution
started with two independent rigid bodies of the previously known T3R3

structure, displaced by half of the c-axis and rotated about it. Once this had
converged (with one of the groups rotating by 25° relative to its original position
during the refinement), a full stereochemical restraint and Rietveld refinement
completed the T3R3DC structure. The structure passes the protein stereo-
chemistry tests usually performed during crystallographic refinement. The final
refinement was of a pattern with 4800 data points up to 3.22 A resolution
(minimum ^-spacing), with 2927 reflections, 7981 restraints, and 4893 structural
parameters (Von Dreele et al. 2000).

4.8 Conclusions

The above discussions and examples illustrate the advantages of using syn-
chrotron radiation to solve crystal structures from powder diffraction data.
Narrow peaks, accurate peak positions and excellent signal-to-background
ratios mean that these data are ideal for indexing, space group determination
and intensity extraction. This, coupled with the flexibility that a modern powder
diffractometer at a synchrotron source provides (e.g. sample environment,
multiple detectors) means that synchrotron data are ideal for structure solution
and refinement. Sadly, despite the excellent quality of synchrotron data and the
ingenuity of the scientists who collect it, not all structures can be solved. Every
laboratory has a supply of powder data sets which stubbornly refuse to yield to
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structure solution. It is the existence of these sets that will act as a continual
challenge to both instrumental and algorithmic developments.
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Neutron powder diffraction

Richard M. Ibberson and William I. F. David

5.1 Introduction

There is an old adage in powder diffraction that 'neutron powder diffraction is
the technique of choice for structure refinement while X-rays should be used for
structure determination'. While this is an over-simplification, it is generally true
that the essentially constant nuclear scattering lengths for neutron powder
diffraction that are beneficial for refinement are also detrimental for structure
solution, because the effective number of visible atoms is higher for neutrons
than for X-rays. Accordingly, the vast majority of crystal structure determi-
nations are undertaken using X-ray diffraction data. There are, however, some
cases in which neutron diffraction data are to be preferred. In this chapter, we
review the technique and instrumentation of modern neutron powder diffrac-
tion with emphasis on its role in the determination of crystal structures.

Thermal neutrons are useful as a crystallographic probe because their
wavelength spectrum is of the same magnitude as interatomic distances. Neu-
trons scatter relatively weakly from matter, which means that large samples may
be used. This penetrating power leads to several advantages. Diffraction
experiments may be performed using complex sample environments such as
cryostats and pressure cells and the use of large samples reduces many of the
systematic errors commonly associated with X-ray powder diffraction.

Neutrons are scattered by the atomic nucleus but also interact, through
magnetic dipolar forces, with unpaired electrons, thus enabling the investigation
of magnetic structures. In the area of powder diffraction, neutrons are the
technique of choice for the structure determination of magnetic structures.
Since the nucleus is a point scatterer, the neutron cross-section is essentially
independent of neutron energy and, therefore, can generally be considered to be
independent of scattering angle or wave-vector K = sin 0/\ = Q/4n. As a result,
strong reflections are commonly observed at both long and short d-spacings.
This is of particular value to structure refinement and can also be useful in
structure solution. Furthermore, the neutron scattering length varies as an
essentially irregular function of atomic number, whereas the comparable X-ray
scattering factor relates directly to the number of electrons. X-ray diffraction, in
consequence, is dominated by the presence of a heavy atom in a structure,
whereas for neutron diffraction, scattering from both light and heavy elements

5
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is of a similar magnitude. X-ray diffraction thus possesses an advantage for
structure solution since there are fewer 'visible' atoms. As a corollary, neutron
diffraction is capable of elucidating the complete structure with greater preci-
sion. Arguably, the main role of neutron powder diffraction in structure
determination is the validation and completion of structures determined using
X-rays. However, there are a number of circumstances, outlined below, in which
it can be advantageous to use neutron diffraction data as the principal tool for
structure solution.

5.2 Instrumentation

High-resolution neutron time-of-flight powder diffractometers operating at
pulsed sources such as HRPD at ISIS and high-resolution instruments on
constant wavelength sources such as D2B at the Institut Laue-Langevin (ILL)
Grenoble, permit the routine collection of data with a resolution, A.d/d, better
than 10~3. In the case of time-of-flight instruments, this resolution is effectively
constant across the whole diffraction pattern. As a direct result of this inher-
ently high resolution, high-quality powder diffraction patterns that contain a
large number of well-resolved reflections and consequently a high-information
content can be recorded. These high-resolution diffraction data may be collected
for Bragg reflections at d-spacings of well below 1 A because of the lack of
form-factor fall-off. This combination of high resolution and access to high
sin 0/\ is the principal reason that HRPD at ISIS in particular can provide an
alternative to single-crystal neutron diffraction for obtaining both accurate and
precise structural parameters in relatively simple crystal structures. Low-tem-
perature structure solution has also proven to be more straightforward, because
the data collection is technically much simpler with neutrons than with X-rays.

5.3 Autoindexing and space group assignment

In the early stages of structure solution, such as the determination of unit-cell
dimensions and the assignment of the correct space group, neutron powder
diffraction can, in some cases, offer significant benefits.

Unit-cell determination by autoindexing techniques (see Chapter 7) is, in
general, crucially dependent on the availability of the longest ^-spacing infor-
mation from a single-phase powder pattern, regardless of the type of radiation
used. High-resolution data provides more precise ^-spacing information lead-
ing to higher figures of merit and more reliable indexing solutions, but again,
these factors are largely independent of the radiation used. The ease of lattice-
parameter determination from first principles in the case of high-resolution
time-of-flight powder diffraction experiments, however, is impressive. The
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technique offers a particular advantage over other methods because in time-of-
flight measurements, the fixed instrument geometry leads to a zero-point error
which is not only small but becomes progressively less important at large
J-spacings, in contrast to the situation in constant-wavelength measurements.

The sensitivity of neutrons to light atoms can be critical to the correct
assignment of space group. For example, neutrons are particularly sensitive to
the tilting of octahedral TiO6 groups in perovskites or to the orientation of
methyl groups in small organic molecules, both of which may subtly affect the
appropriate space group. This is well illustrated by the study of the structure
and phase transition in methylammonium tin chloride (Yamamuro et al. 1995).
This is one of a large family of compounds that have interesting structural and
dynamic properties associated with phase transitions. Within the 'R3m' phase of
all these compounds, a subtle phase transition occurs between 100 and 200 K.
All of the structural and spectroscopic properties change only slightly, but there
is a clear heat-capacity anomaly. Significantly, a single crystal X-ray study
(Kitahama et al. 1979) found the structure to be R3m at all temperatures,
although the hydrogen atom positions were not determined directly. In con-
trast, the neutron powder diffraction study carried out on HRPD confirmed
an order-disorder transition associated with the CD3 and ND3 groups of the
methylammonium ion at 156 K, and the true low-temperature space group was
shown to be R3. The high- and low-temperature structures of the CD3NH^
cations are shown in Fig. 5.1. The two alternative methyl rotations in the dis-
ordered phase are separated by about 1 A and are easily resolved using HRPD.

Fig. 5.1. Fourier maps of the CDjND^ cations in the high-temperature disordered phase
of methylammonium tin chloride at 300 K and the low-temperature ordered phase at 5 K.
The sections are shown perpendicular to c at the level of the D atoms.
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5.4 Patterson methods

Patterson methods are most effective when there are a limited number of strong
scatterers that dominate the interatomic vector map (Chapter 12). This situa-
tion is rarely the case with neutron diffraction studies. However, there are cases
where the scattering characteristics of neutrons benefit this technique. For
example, the sensitivity in neutron diffraction data to the hydrogen atoms
decorating, for example, a benzene ring is useful in Patterson methods to
emphasize the planarity of the group to be located. For powder studies of organic
compounds, hydrogen is ideally replaced by deuterium, which has essentially
the same scattering length as carbon. The scattering dependence of neutrons
upon the nucleus is a combination of potential and resonance scattering and it is
the sum of these two factors that facilitates differentiation between isotopic
species of an element. Of more potential interest is the occurrence of negative
scattering factors for some elements. This phenomenon offers the unique con-
cept of Patterson techniques using negative-channel pattern decomposition.
This is discussed further in Chapter 12, where the particular case of the synthetic
mineral sphene, CaTiSiO5, is outlined.

5.5 Direct methods

The more uniform nature of scattering lengths and the ability to record data
out to high Q values make Direct methods a more attractive technique than
Patterson methods for structure solution using neutron powder diffraction
data. The practicability of ab initio determination from neutron powder data
was demonstrated by Cheetham et al. as early as 1986 with the structure of ferric
arsenate, FeAsO4. The structure is monoclinic, space group P2\jn, with a unit-
cell volume of 296.55 A and six atoms in the asymmetric unit, and its solution
by Direct methods was a tour de force. Given that structure solution of inor-
ganic compounds using X-rays is relatively straightforward, the literature for
ab initio solution from neutron powder data alone is, in this particular field,
restricted (see for example Balsys and Davis 1994, 1997, for studies of layered
alkali-transition metal oxides, and Harrison et al. (1995a) on the structure of
Sr6Co5015).

In recent years, the majority of crystal structures that have been determined
solely from neutron powder data are molecular. These include ortho-xylene
(Ibberson et al. 2000ft), acetaldehyde (Ibberson et al. 2000c), dimethyl sulphide
(Ibberson et al. 1997), methyl fluoride (Ibberson and Prager 1996), dimethyl
acetylene (Ibberson and Prager 1995), trichloronuoromethane (Cockcroft and
Fitch 1994), rhenium heptanuoride (Vogt et al. 1994), trifluoroiodomethane
(Clarke et al. 1993), malonic acid (Delaplane et al. 1993), tribromofluoro-
methane (Fitch and Cockcroft 1992), trifluorobromomethane (Jouanneaux et al.
1992) and cyanamide (Torrie et al. 1992). This success is due to a number of
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factors. Many of these structure solutions and space group assignments depend
crucially on accurate hydrogen atom location. With neutron diffraction data,
this can be done with ease, particularly if the sample is deuterated. Moreover,
the low melting point of the majority of the examples cited above presents
additional technical problems for X-ray studies, either in terms of producing
and handling small single crystals, or producing small volumes of polycrystal-
line materials that exhibit a good powder average.

The complexity of structure solution by Direct methods tenable by neutron
powder diffraction remains modest even with recourse to the sophisticated
intensity extraction procedures detailed in Chapters 8-11. The monoclinic
structure of ortho-xylene, F=634A3, with 18 atoms in the asymmetric unit
and the triclinic structure of dimethyl sulphide, V= 179 A3, with nine atoms in
the asymmetric unit represent some of the most complex examples tackled
to date.

5.6 X-n structure solution

The limits of structural complexity that can be solved and refined from powder
data have been substantially increased by harnessing the combined power
of X-ray and neutron diffraction. For example, in the study of the non-
aluminosilicate open framework material LiZnPO4, Harrison et al. (1995ft)
used synchrotron X-ray data and Direct methods in order to establish the
framework structure. Having established the location of the framework species,
neutron data were then used to locate and refine locations for the lithium
and water molecule guests. A similar approach was used by Morris et al.
(1992) in order to elucidate the novel framework structure of monoclinic
Ga2(HPO3)3 • 4H2O (space group P2{) with a total of 29 atoms in the asym-
metric unit and a unit-cell volume of 580 A3. Synchrotron X-ray data were
collected on beam line X7A at the NSLS, Brookhaven National Laboratory
and structure factors for 551 reflections were extracted from the powder pat-
tern. Structure solution using Direct methods produced an E-ma.p with two
large peaks that were assigned as gallium atoms. Fourier recycling revealed a
further four atoms that were assigned to be two phosphorus and two oxygen
atoms. The atomic coordinates were then refined using the Rietveld method
and subsequent Fourier syntheses revealed the positions of a further phos-
phorous atom and 10 more oxygen atoms. Thus, a total of 17 atoms were
located in the asymmetric unit from the X-ray data. In order to complete the
structure solution and improve the overall quality of the structure refine-
ment, neutron diffraction data were recorded on diffractometer BT-1 at the
National Institute of Standards and Technology. Computer graphics techni-
ques were used to add the positions of phosphite deuteriums and two of the
water deuteriums to the model. Rietveld refinement against the neutron data
was then possible. An additional water oxygen and the remaining deuterium
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atoms were located from subsequent cycles of refinement and Fourier syn-
thesis. This complementary use of synchrotron X-ray and neutron powder
diffraction data illustrates well the potential for tackling considerably more
complex structures using what may be described as traditional crystallographic
methods.

Following their work on gallium phosphite, Morris et al. (1994) proceeded to
solve the structure of La3Ti5Al15O37 that has 60 atoms in the asymmetric unit,
again using a combination of synchrotron X-ray and neutron powder diffrac-
tion. The overall results are impressive; the structure is non-centrosymmetric
(space group Cc) with a unit-cell volume of 2383 A3. X-ray data were used to
locate the bulk of the metal atoms and 27 of the oxygen atoms. The role then
played by the neutron data is of particular interest since, in addition to pro-
viding the location of the remaining oxygen atoms, it proved crucial in resolving
an incorrect assignment of aluminium for titanium in the analysis of the syn-
chrotron data. In the final analysis, a joint-Rietveld refinement of the structure
was carried out using two neutron data sets recorded at on BT-1 at NIST with
Cu(311) and Si(531) monochromators (A= 1.539 and 1.589A, respectively).
The higher take-off angle for the Si(531) crystal compared with the Cu(311)
monochromator yields greater resolution for the high-angle data that is espe-
cially important for precise structure refinement.

5.7 Future possibilities

As the desire to solve more complex structures from powder diffraction data
grows, the need to combine X-ray and neutron powder diffraction data will
increase. The remarkable success of Morris et al. with L^TisAl^C^, described
in the previous section, will become more commonplace as X-ray powder dif-
fraction data alone prove to be inadequate. The recently developed global
optimization techniques (see Chapter 15) will also benefit from the availability
of neutron powder diffraction data. These techniques often utilize diffraction
data to molecular (fi?m;n^1.5 to 2.5 A) rather than true atomic resolution
Wnin ~1 A), and this can leave a degree of ambiguity in the location of some of
the atoms within the crystal structure. The availability of neutron powder dif-
fraction data provides essentially an independent verification of the correctness
of the proposed crystal structure. If the proposed crystal structure agrees with
both X-ray and neutron powder diffraction data, one can be confident that the
structure is correct. Moreover, the neutron powder diffraction data can help in
the location of light atoms such as hydrogen and lithium and in the dis-
crimination between atoms such as nitrogen and oxygen in a molecular crystal
structure. A typical example is illustrated in Fig. 5.2 where two structures of
tetracycline hydrochloride are shown.

This material was used as part of an unofficial 'SDPD Round-Robin chal-
lenge' issued in 1998. Both structures have essentially equivalent goodness of fit
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Fig. 5.2. Two crystal structures for tetracycline hydrochloride obtained by simulated
annealing. The structures differ only in the orientation of the small planar fragment
[C-CO-NH2] to the right of the fused-ring system. It is difficult to distinguish between
them on the basis of X-ray powder diffraction data but with neutron data the difference
is substantial.

to the powder X-ray diffraction data. The only difference is the 180° rotation of
the NH2 and the oxygen atom about the C-C bond on the right-hand ring. It is
difficult to distinguish between the two alternatives with X-ray diffraction alone
as the number of electrons is so similar for the NH2 and O. With 1.5-2 A
resolution data, it is also difficult to discriminate on the basis of bond lengths.
With neutron diffraction data there is no such problem. The hydrogen atoms
are immediately visible and the nitrogen scattering length is some 60 per cent
larger than that of oxygen.

The uses of neutron powder diffraction data in global optimization methods
are not, however, restricted to the 'end-game' of structure solution. For
example, the orthorhombic structure of meta-xylene, with 18 atoms in the
asymmetric unit and a cell volume of 1280 A3, was solved routinely using global
optimization methods applied to neutron data (Ibberson et al. 2000a). Other
more recent examples of this technique include solution of the phase III
structure of methane (Neumann et al. 2003) and the phase II structure of
dimethyl sulfate (Ibberson et al. 2006).

The negative scattering lengths of hydrogen can actively be used to discri-
minate between the outer-molecular envelope (corresponding to the hydrogen
atom positions) and the molecular backbone. A two-channel, positive-negative
maximum entropy (ME) map phased from a small number of reflections pro-
vides superior contrast to a map containing only positive scattering density.
This is exemplified by the example of sulphamide. Data were collected on
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Table 5.1 The phased-structure factors used in the construc-
tion of the hkQ projection of sulphamide. The phases of the
weak reflections are not known. However the bimodal distribu-
tion can be well approximated by a single Gaussian distribution
centred at zero

h

6
4
4

10
6
2

k

12
14
8
4
6
8

/

0
0
0
0
0
0

F

0.0
0.0
0.0

11.4
13.9
14.7

a(F)

0.1
0.1
0.1
0.4
0.1
0.1

HRPD at ISIS. The crystal structure is orthorhombic with space group Fddl
and lattice constants a = 9.6479, b= 16.7624 and c = 4.4939 A. With the active
use of only six centric hkQ reflections, it is possible to locate the molecule within
the ab plane. Three strong and three weak hkQ reflections were used in the
construction of the scattering density. These are listed in Table 5.1.

In contrast with traditional Fourier methods, the weak reflections have a
valuable role to play. ME maps are consistent with the observed structure factor
data and are not precluded from containing non-zero Fourier components
associated with unobserved data. The addition of weak reflection information
forces the ME map to have only very small Fourier components associated with
these reflections. Remarkably, in the positive channel of the Fourier projection
shown in Fig. 5.3(a), the nitrogen atoms are revealed very clearly along with the
oxygen atoms. The sulphur atom is invisible. This is to be expected since
nitrogen is the relatively 'heavy atom' for neutrons, while sulphur is a weak
scatterer. The relative scattering lengths of the main atoms in organic molecules
are listed in Table 5.2 with their 'X-ray equivalent' scattering—oxygen is taken
to be the reference standard. The negative ME map is less clear cut. Although
the hydrogen atom positions are clearly indicated, the strongest feature is
related to the positive scattering density associated with the nitrogen. This is
perhaps not unexpected since so few Fourier components are being used.

The potential presence of both positive and negative scattering density in a
neutron diffraction Fourier map is commonly considered to be disadvanta-
geous, because the positivity premise (and, consequently, triplet relationships)
of Direct methods is violated. However, this example of sulphamide illustrates
that there is extra information when negative scattering occurs, since two maps
rather than one can be constructed. The contrasting visibility of different atoms
for neutrons and X-rays can also be harnessed to good advantage. Although
neutron powder diffraction data will always be used less frequently than X-ray
data for structure solution, the complementary information available from

95



Fig. 5.3. (a) Positive and (b) negative channel ME projections for sulphamide. Using
only three phased strong reflections and three unphased weak reflections, all the atoms in
the projected structure of sulphamide are clearly determined. The latter map shows only
hydrogen positions while nitrogen and oxygen positions (sulphur scatters weakly) are
clearly located in the positive channel. The figures are arranged as follows: projection
only (left), projection plus overlaid structure (centre), structure only (right).

Table 5.2 Common elements in organic materials and their
neutron scattering lengths. The element associated with the effective
equivalent X-ray scattering factor is shown in the third column (the
scattering factors are scaled relative to oxygen)

Atom

C
N
0
s
H
D

b (10~15m)

6.65
9.40
5.80
2.87

-3.74
6.67

X-ray

F
Al
O
Be
B
F

'equivalent'
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neutron diffraction data will become increasingly important as more complex
crystal structures are tackled. In particular, neutron powder diffraction may
prove to be an invaluable additional technique for crystal structures that have
more than one molecule within the asymmetric unit, where molecular-envelope
information can provide a significant constraint upon the complex search space
that needs to be explored by global optimization methods.
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Sample preparation, instrument selection and
data collection

Roderick J. Hill and Ian C. Madsen

6.1 Introduction

The importance of careful sample preparation and data collection in powder
diffraction studies has been described on several previous occasions (Hill and
Madsen 1987; Bish and Post 1989; Hill 1993; and references therein). Never-
theless, the process of collecting diffraction data is often entered into without
adequate forethought about the purpose of the data collection or its impact
on the outcomes of the experiment. Laboratory instruments normally have a
'favoured' configuration which is used for a wide range of experiments. While
this is convenient, it is often not suitable for all of the data collections that
take place in the laboratory. Even at large installations, folklore and/or time
pressures, rather than a considered approach, often dictate data collection
protocol.

In designing a powder diffraction experiment, it should be remembered that
there are a multitude of possible reasons for collecting diffraction data on a
sample. These include the qualitative and quantitative phase analysis of a multi-
phase mixture, the determination of unit-cell dimensions through pattern
indexing, the solution of an unknown crystal structure, or the refinement of a
partially known structure using the Rietveld method. In the context of this
book, structure determination lies in the foreground, so its requirements will
be emphasized. Considerations specific to Rietveld refinement have been
discussed previously (Hill 1993; McCusker et al. 1999).

For the solution and/or refinement of a crystal structure, the peak intensities
must accurately represent the inherent scattering from the crystal lattice, free
from aberrations that might be introduced by the sample or the instrument. In
other words, the diffraction pattern must be an unbiased representation of the
intensity-weighted reciprocal lattice. If, however, unit-cell determination and
indexing (see Chapter 7) is the primary purpose of the experiment, the peak
intensities are of less concern than the peak positions. In this case, the
positions of the peaks must accurately reflect the ^-spacing of the reflections
involved and their widths and shapes need to be such that they can be readily
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modelled with existing peak profile functions. Thus, the experiment might be
constructed differently, depending on the information required.

6.2 Issues and early decisions—experimental design

There are three central issues to be addressed before data collection begins. The
first relates to the sample itself. What is the form of the sample? Is it a powder or
can it be processed into a powder? How much sample is there? Is there enough
for neutron analysis (if required) or only enough for a small capillary or a thin-
film sample mount? Will the data be free of sample-related aberrations, such as
preferred orientation or extinction, due to size and shape effects?

The second main issue involves the selection of the most appropriate dif-
fraction instrument for the experiment. What radiation should be used? Are
X-rays the most appropriate radiation? Is access to a synchrotron facility
required for additional intensity or resolution (see Chapter 4)? If neutron data
are better suited, perhaps because of sample absorption or the need to determine
light atom positions (see Chapter 5), should a high-or low-resolution instrument
be used? Having decided on the radiation, it is necessary to consider the
instrument geometry. Most laboratory diffractometers are set up in reflection
mode, but an increasing number of laboratories are equipped with capillary
transmission mode setups. At neutron and synchrotron facilities, capillary
mode is almost universal.

The third and final issue relates to the desirable characteristics of the data.
What ^-spacing range is required? What should the step width between the data
points be? How intense should the pattern be? That is, what exposure time is
required, or how long should the counter dwell at each point? Should a fixed or
variable counting time strategy be employed?

All of the factors mentioned above are within the control of the experi-
mentalist and all have the potential to affect the outcome of the data analysis.
Since the choice of experimental conditions will also be partly governed by
the total time available on the instrument of choice, this may require that the
optimum data collection conditions be compromised, or, in some cases, the
speed of data collection may be governed by the sample itself. If, for example,
the sample is unstable, or if it is used in a dynamic study, there may be a need to
collect the data more rapidly than normal. In this case, it may be necessary to
choose between a conventional detector system and one that collects the
whole pattern simultaneously using a position sensitive detector, an image
plate or a film.

In this chapter, the following issues are addressed: (a) the need for multiple
datasets, (b) the effect of sample characteristics, (c) the diffraction instrument
and (d) data collection strategies and the manner in which they influence the
diffraction pattern and the quality of data analysis. The discussion relates
equally to pattern indexing, structure solution, Rietveld refinement and phase
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analysis, although it is clear that the emphasis will vary in each of these
applications.

6.3 Multiple datasets

During the course of a full structure determination and refinement from powder
data it can be advantageous to collect several diffraction patterns under con-
ditions optimized for each of the analytical steps involved. This addresses and
corrects the common practice in which all operations are performed using a
single dataset. The latter leads to compromises being made, and has the
potential to cause errors in the final result. The set of recommended patterns
includes:

1. A reconnaissance pattern for the identification of phases by search-match
methods, for the preliminary investigation of the suitability of the sample
(e.g. purity), and to decide on future data collection conditions (^-spacing
range, step width and pattern intensity). Such a pattern can be collected
quite rapidly over a limited ^-spacing range.

2. An indexing pattern to be used in the determination of the unit-cell
dimensions via pattern indexing. Ideally, in a laboratory X-ray experiment,
this pattern should be collected with an internal standard (for accurate 20
calibration) and a thin-film sample mount (to minimize sample-related
aberrations in a Bragg-Brentano setup) and would be limited to the 20^-0
largest J-spacings.

3. The pattern decomposition pattern to be used for the extraction of integrated
intensities for subsequent structure solution. This pattern needs to be
collected over a wide ^-spacing range with the highest possible resolution to
allow a maximum separation of adjacent peaks and with high intensities to
ensure the good counting statistics required for the decomposition of both
strong and weak reflections. Step size should be selected according to the
characteristics of the pattern (see Section 6.6.1).

4. The structure refinement pattern to be used for the Rietveld refinement of the
structure. This pattern has the same requirements as the previous one, but
should also include the smallest practical J-spacings. These low ^-spacing
reflections are essential for a precise refinement of the structure parameters.

5. A second refinement pattern might be collected with a different wavelength
or radiation source to resolve problems in the structure refinement. For
example, if most of the work has been carried out using laboratory X-ray
data, a neutron dataset may be required to obtain accurate refinement of
light atoms, selected atom site occupation factors or thermal parameters.

Specific discussion of the need for, and requirements of each of these data sets
will be described at appropriate points in the discussion below.
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6.4 The sample

One of the most critical steps in diffraction analysis is to minimize systematic
sample-related effects and instrumental aberrations before data collection
begins. Very often the models for the correction of aberrations are only
approximations, which do not adequately correct for large errors in the data.
A computer program should never be used to make gross corrections for poor
sample preparation or inappropriate instrument configuration. Rather than
persisting with poor data, it is better to (a) re-prepare or remake the sample,
(b) find a more suitable sample, or (c) change to another instrumental config-
uration and/or wavelength.

6.4.1 Sources of sample-related errors

A summary of some of the typical sample-related problems and their possible
solutions can be found in Table 6.1. It should be noted that sometimes a sample
'problem' can actually provide useful information. For example, while preferred
orientation can often cause difficulties in the measurement of unbiased powder
intensities, the same effect can be used to obtain more information in an
intensity extraction process (see Chapter 9).

6.4.2 Number of crystallites contributing to the diffraction process

For structure refinement, it is generally accepted that the peak intensities need
to be measured to a precision of about ±2 per cent because this is a reasonable
target for the agreement between observed and calculated intensities in the
structure refinement step. As indicated in Table 6.2, the ability to achieve this
precision is strongly governed by the size of the crystallites in the sample.
Reproducible diffraction intensities require a small crystallite size in order to
ensure that all parts of the Debye-Scherrer cone are equally populated by the
diffracted beams.

Table 6.3 shows that for a typical sample volume of 20mm3 there can be as
few as 12 crystallites diffracting if their size is about 40 um, but this figure
increases by more than three orders of magnitude if the crystallite size is reduced
to 1 um. It should be noted, of course, that single-crystal diffraction patterns
can now be collected on crystallites with volumes of less than 1000 urn3 at
synchrotron microcrystal facilities, so if there are large crystallites in the sample,
this alternative route to structure solution should be considered before the
sample is ground.

Elton and Salt (1996) have used both theoretical and experimental methods
to estimate the number of crystallites diffracting (A^ff) in a sample. They have
shown that variations in line intensity between replicate samples arise largely
from the statistical variation in the number of particles contributing to the
diffraction process and that small changes to the instrumental and/or sample
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Table 6.1 A list of some

Effect

Inaccurate peak
intensity measurement

Poor reproducibility of
peak intensities

Enhanced or reduced
peak intensities
along particular
crystallographic
directions

Low-angle intensities
observed with lower
than expected
intensity

High background

sample related problems, their

Cause

Not enough crystallites
contributing to the
diffraction process

Sample not representative
of the 'bulk' — not
enough crystallites
in the sample

Preferred orientation

Incident beam 'footprint'
too large; surface
roughness; extinction

Sample fluorescence;
incoherent scattering;
air scatter

cause and possible solutions

Possible solution

Reduce the crystallite size
Spin the sample
Increase beam divergence

Adopt better sub-sampling
strategies

Reduce the crystallite size

Reduce the crystallite size
Change sample
presentation (side-mount
rather than back-press;
use capillary geometry)

Include randomizing
sample movements

Introduce a diluent
Average the intensity
around the Debye-Scherrer
'rings'

Match footprint of beam
and sample by correct
selection of slits

Smooth the sample surface
Reduce crystallite size
Introduce crystal strain
Use a shorter wavelength

of radiation

Change wavelength
Deuterate the sample
Evacuate the beam path
Use a diffracted beam
monochromator

configuration can significantly improve the sample statistics. An estimate of the
fractional particle statistics error, aps, is given by:

Estimated values of yVdiff are dependent on the number of particles being
irradiated and the solid angular range over which the particle can diffract.
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Table 6.3 Relationship between crystallite diameter and number of crystallites diffrac-
ting (from Smith 1992)

Crystallite diameter
Crystallites/20 mm3

No. crystallites diffracting

40|j,m
5.97 x 105

12

10 urn
3.82x 107

760

1 |j,m
3.82x 1010

38000

6.4.3 Increasing the number of crystallites examined

For a given sample, several methods can be used to increase the number of
crystallites contributing to the diffraction pattern.

1. Use an instrument with wider beam divergence (aPS reduced by a factor of
about two). However, it should be noted that this will reduce the overall
instrumental resolution and lead to greater peak overlap, so might not be
appropriate if structure determination is planned.

2. Rotate the sample about the normal to the sample surface for a flat-plate
sample or about the sample axis for a capillary sample (aps reduced by a
factor of about five or six).

3. Oscillate the sample about the theta axis (flat plate only). Note that this
motion defeats the exact 0/20 relationship between sample and receiving slit
and may lead to aberrations in the peak intensities, positions and profile
shapes when using a Bragg-Brentano setup with a non-parallel X-ray beam.

4. Repack the sample, recollect and reanalyse the diffraction data. Averaging
the results from each analysis will produce more meaningful parameter
values and will allow better determinations of their estimated standard
deviations (e.s.d.s).

5. Average the data sets collected in (4). This will increase the precision of the
final estimates.

For heavily absorbing materials, the beam will not penetrate as far into the
sample and the overall volume of diffracting material will therefore be smaller.
Equation (6.2) shows the relationship between linear absorption coefficient (//)
and penetration depth (t):

For quartz (SiO2) with a Cu Ka source and a diffraction angle of 30° 20,
,u = 95cm~1 and t is approximately = 95 um. For hematite (Fe2O3), with
/j,= 1146 cm"1, the penetration depth is only 7.8 um.
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Table 6.2 Typical intensity reproducibility for quartz (113) reflection using Cu Ka
(from Klug and Alexander 1974)

Crystallite size range 1 5-20 |j,m 5-50 |j,m 5-1 5 |j,m < 5 |j,m
Intensity reproducibility 18.2% 10.1% 2.1% 1.2%
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The most effective method of increasing the number of crystallites examined
is simply to reduce the average crystallite size by carefully grinding the sample.
However, while too little grinding results in an inadequate reduction of
size, over-grinding often changes the sample. This can result in (a) generation
of amorphous layers at the surface, (b) peak-broadening related to crystallite
size and strain effects, and (c) solid-state phase transitions. These problems
are significantly reduced by grinding in a liquid (e.g. alcohol or acetone),
which tends to reduce local heating of the sample in the grinding vessel.

It should be noted that all methods of grinding will cause some contamination
from the grinding vessel unless the vessel and sample have the same phase
composition. The aim should always be to minimize the contamination, or at
least to ensure that the contaminating material does not significantly interfere
with the diffraction pattern. Materials commonly used in grinding vessels
include agate (SiO2), tungsten carbide (WC), tool steel (Fe), corundum (A12O3)

Table 6.4 A comparison of different methods of crystallite size reduction with their
potential benefits and shortcomings

Technique

Hand mortar and
pestle

Automatic mortar
and pestle

McCrone
micronising mill

Rotary
(Sieb-Technik)
mills

Ball mills

Benefits

Cheap and readily available

Can produce small sizes
(~3 |j,m) in reasonable times
(several minutes)

Can be used for 'dry' or
'wet' grinding

Capable of routinely
producing sizes of ~10 |J,m
with a small spread of
sizes

Use of grinding fluid
minimizes structural damage

Effective for initial grinding
of very large grains
( > a few mm)

Rapid reduction of particle
size

Drawbacks

Tedious to use, especially
if small particle sizes
are required

The use of 48 grinding
elements can make it
tedious to clean

Can cause severe
structural damage

Not suitable for fine
grinding; broad range of
particle sizes produced

Can be tedious to clean
Cannot easily accommodate
liquids so can cause severe
structural damage
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and zirconia (ZrO2). A summary of some of the commonly used methods of size
reduction is given in Table 6.4.

6.4.4 Generating random orientation

In order to generate peak intensities that are representative of the intensity-
weighted reciprocal lattice, the crystallites in the powder must not only be
sufficient in number, but they must also be randomly oriented. That is, each
crystal orientation should have the same probability of diffracting.

A number of sample preparation methods can be used to minimize preferred
orientation. For flat specimens, back-pressing and side-loading into the sample
holder tend to produce much less preferred orientation than front-mounted
samples. However, they tend not to be very effective for phases with extreme
morphologies like clays. The addition of solid diluents such as gum arabic,
glass, gelatin or the use of a binder material can reduce preferred orientation,
but will contaminate the sample, increase the average transparency, and pro-
duce amorphous scatter (resulting in an increase in the pattern background) or
the appearance of extra peaks in the pattern. Spray drying is quite effective
in reducing preferred orientation, but is not suited to small samples (<lg).
To work effectively, the particles used in a spray drier should be < 5 um. Sample
motion at 90° to the diffraction vector produces the most effective reduction of
preferred orientation. The added benefit is that the sample motion also
improves particle statistics, but it should be borne in mind that rocking changes
the 2:1 20:0 relationship in the Bragg-Brentano case.

6.4.5 Removing extinction

Multiple diffraction of the X-ray or neutron beam within the crystallites
(extinction) can result in the systematic attenuation of the high-intensity, low-
angle data. The effect is most commonly observed in a material with larger
perfect crystallites and is rarely a problem with fine powders. Hence, the effect
can be reduced by fine grinding to decrease the mosaic size and/or introduce
lattice strain. Extinction can also be reduced by decreasing the wavelength
used in the experiment. Care must be taken in interpreting the presence of
extinction in a sample as it is often confused with other effects that cause similar
decreases in large peak intensities, such as detector dead time, preferred
orientation or surface roughness (for reflection geometry).

6.5 The instrument

The choice of diffraction instrument is often governed by availability rather than
by careful consideration of the instrument most suited to the needs of the
experiment. While it is always easier to collect data on a laboratory instrument
than to travel to the large, and often difficult to access, neutron and synchrotron
sources, this should not be the governing criterion in selecting the instrument.
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6.5.1 What radiation to use—X-rays or neutrons?

Structure solution is generally easier with X-rays because (a) the phase problem
is more likely to be solved for a particular subset of the atoms in the asymmetric
unit (i.e. the heavy atoms) and (b) the resolution of X-ray instruments is gen-
erally better than that available at neutron sources (Hill and Cranswick 1994).
However, for structure refinement, precise structural parameters are more likely
to be derived from neutron data because (a) the distribution of scattering power
is more uniform between elements and (b) the fall-off in reflection intensities
with decreasing ^-spacing is not as severe.

Some of the issues and recommendations to be considered prior to the
selection of the instrument are summarized in Table 6.5. Further details are also
given in Chapters 3-5.

6.5.2 What wavelength to use?

Once the instrument has been selected, an appropriate choice of wavelength,
which is not merely dictated by the usual laboratory setup, also needs to be
made. The essential criteria to be considered are that (a) for structure solution
using Direct methods, more than 10 | E values of reasonable magnitude should
be collected for every atom in the asymmetric unit (Cheetham and Wilkinson
1991), (b) for structure refinement, more than 10 reflection intensities should be
collected for every structural parameter in the model (Hill and Cranswick 1994),
and (c) for X-rays, some elements in the sample may cause excessive fluores-
cence or absorption when exposed to certain wavelengths.

The observations to parameters ratio should be maximized for best results, so
a short wavelength may have to be selected to ensure that sufficient reflections
fall within the accessible diffraction sphere or a longer one to attain a better
separation of the reflections. For transmission geometry, the effects of absorp-
tion in the sample and the beam path should be kept to a minimum. This is best
achieved by selecting a very short wavelength or a wavelength on the low-
absorption side of an absorption edge. If the experiment is making use of the effects
of anomalous dispersion for structure solution or site-occupancy refinement
(Attfield 1992), fine tuning of the wavelength and hence access to a synchrotron
source will be required. The presence of components in the sample that produce
fluorescence may require the selection of a wavelength that avoids this effect and
its adverse influence on background levels. If a special sample environment is
required in which only a limited range of diffraction data can be observed (for
example, in a pressure cell), the use of a short wavelength is recommended.

6.5.3 Number of 'independent' observations (integrated intensities)

The number and density of reflections in a diffraction pattern is governed not
only by the wavelength used to collect the data but also by crystal symmetry and
unit-cell size. For example, cubic and triclinic cells each with a volume of
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Table 6.5 Summary of the issues which need to be addressed in the collection of
diffraction data and recommendation of the most appropriate source to use

Issue

Intensity at
sample

Unit cell
determination

Heavy
X-ray
absorber

Light atom
in presence
of heavy
atom

Hydrogen
atoms

Large unit
cell (complex
structure)

Magnetic
structure

Thermal
parameters

Line-broadened
sample

Availability
at low cost

Very small
sample size

Non-ambient
environment

Conventional
laboratory
X-ray sa

/

fair

short A
reflection
geometry

no

no

no

no

poor

/

/

/

maybe

High-
resolution
laboratory
X-rays b

no

/

short A
reflection
geometry

no

maybe

/

no

/

compromised

/

/

maybe

Synchrotron
X-rays

/

/

short A

no

maybe

/

no

/

compromised

competitive
access
/

/

Low-
resolution
neutrons0

no

poor

/

/

when
deuterated

no

/

poor

/

competitive
access
/

/

High-
resolution
neutrons'1

some third
generation
instruments
/

/

/

when
deuterated
/

/

/

compromised

competitive
access

no

/

aCharacteristic doublet present, minimum FWHM ra 0.12° 20
bSingle wavelength (incident beam monochromator), minimum FWHM KI 0.06° 20
"First generation neutron facilities with minimum FWHM KI 0.1025° 20 at low angles, but rising
rapidly thereafter
dSecond and third generation instruments with minimum FWHMfsO.lO0 20 at 110°—135°. At
time-of-flight sources, the equivalent FWHM in 26 is atanO where a ranges from 0.05 to 0.25.

1000 A3 and one lattice point per unit cell produce markedly different numbers
of reflections and reflection density in a pattern (Table 6.6).

Since the intensities of overlapping reflections are correlated with each other,
the available information in a powder diffraction pattern is rarely equivalent to
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Table 6.6
reflections
for 1000 A
1993)

Symmetry

Cubic
Triclinic

Calculation of the reflection density and total number of
in a diffraction pattern up to 110° and 140° 29, respectively

3 cubic and triclinic unit cells, using a wavelength of 1 A (Hill

Average reflection
multiplicity

24
2

Maximum reflection
density at 110° 29
(reflections/degree)

14
170

Total reflections
up to 140° 26»

1150
13900

that of a full single-crystal dataset. At one extreme, when reflections completely
overlap, as for Friedel pairs and those with systematic or accidentally exact
redundancies in their J-spacings, the information that is extractable from the
pattern is reduced to a single observation for the overlapping set. As the centroids
of the overlapping reflections move apart, progressively more information about
the individual components is realizable in the deconvolution process. This leads
to greater confidence in the determination of the individual reflection intensities
and therefore, to a higher chance of success in structure solution. Clearly, the
amount of independent information (i.e. reflections) can be substantially reduced
if the unit cell is large, if the cell dimensions are accidentally related (e.g. a ~ 2b)
and/or the resolution of the instrument is poor. Altomare et al. (1995) have
suggested a method for quantitatively estimating the amount of reflection
overlap, whilst David (1999) has suggested an alternative method. Either method
can be used to make a quick estimate of the number of 'independent' reflections
in a diffraction pattern, for use as a guide for assessing whether or not a problem
is tractable and, if so, what data collection conditions are appropriate.

6.5.4 What geometry to use?

The selection of which diffraction geometry to use will be largely governed by
sample related considerations that include (a) the amount of material available,
(b) whether aberrations such as preferred orientation are present, and (c) whether
the sample will remain stable over the duration of the data collection. A small
amount of weakly diffracting material may require simultaneous detection of
the entire pattern using a position sensitive detector or an image plate system in
order for the data collection to be made within a reasonable period of time.
These and other sample-related conditions and recommendations for instru-
ment geometry are summarized in Table 6.7.

6.5.4.1 Flat-plate sample

This is still the most common geometry used in laboratory X-ray facilities.
Detailed discussion of its relative merits can be found in Cullity (1978),
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Klug and Alexander (1974) and Jenkins and Snyder (1996) and will not be
repeated here.

In summary, the important points to remember for reflection geometry
include:

1. For accurate measurement of peak intensity, the sample must be 'infinitely'
thick to the radiation employed or an intensity correction must be applied.
Equation (6.2) shows the relationship between sample linear absorption
coefficient and sample thickness.

2. For a sample with a low absorption coefficient, the penetration of the beam
into the sample will result in a significant peak shift and asymmetric
broadening unless the incident beam has zero, or very low, divergence (as at
a synchrotron X-ray source).

3. The collection of representative intensities requires that the footprint of the
incident beam fall on the sample at all values of 20.

4. Other aberrations can cause loss of intensity at low 20 in patterns collected
on laboratory instruments. These include (a) sample transparency,
(b) anode self absorption, (c) axial divergence and (d) curvature of the
Debye-Scherrer conic section entering the receiving slit. An additional

Table 6.7 Details of sample
instrument geometry

Sample Condition

Preferred orientation present

Heavy absorber
Medium to low absorber

Large crystallite size, but
sample cannot be ground

Small sample
Weakly scattering or
multi-phase

Unstable sample or
dynamic study

related problems and recommendations for appropriate

Recommended Geometry

Transmission — capillary (Debye-Scherrer) with
sample spinning (preferably Gandolfi-type)

Area detector with averaging or integration of
intensity around the Debye cone

Reflection geometry with X-rays, or use neutrons
Transmission — capillary or thin film
Absorption can be decreased further by diluting

sample or using shorter wavelength

If the crystallites are single, consider microcrystal
diffraction, otherwise

Transmission — capillary with Gandolfi-type
sample motion

Transmission — capillary or thin film
Position sensitive detector
Multiple detectors
Film or image -plate system

Position sensitive detector
Multiple detectors
Film or image -plate system
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intensity correction has been proposed to calibrate the instrument for these
effects (Matulis and Taylor 1993).

6.5.4.2 Thin sample

This is an optimal geometry for the determination of accurate peak positions for
pattern indexing and unit-cell refinement on a laboratory source, because it
eliminates most of the aberrations associated with 'thick' samples (Klug and
Alexander 1974). However, thin sample mounts are not uniform or infinitely
thick, so they are not suitable for the collection of intensity data. Furthermore,
this technique may induce preferred orientation in the sample making the peak-
intensity estimates unreliable.

The best substrate for thin sample presentation is a 'zero-background' plate
consisting of single crystals of silicon or quartz cut at an angle that ensures that
no diffraction peaks are observed in the diffraction range of interest (Narasimha
Rao et al. 1996). Thin sample mounts can be prepared by (a) sprinkling a small
amount of the sample onto a substrate coated with a viscous material (grease,
oil, etc), or (b) placing a small amount of powder on a clean substrate and
mixing it with a few drops of a suitable solvent (e.g. ethanol) to form a 'slurry'.
Evaporation of the solvent leaves the sample as a thin film on the surface.
Suitable patterns can be obtained from very small amounts of material. Care
needs to be taken with this type of mount to ensure that the sample is at the
correct height in the diffractometer so that aberrations due to sample offset are
minimized, although this is not a problem for parallel beam geometry.

6.5.4.3 Capillary sample

Transmission (capillary) geometry is used almost universally for neutron and
synchrotron data collection but is less common for laboratory X-ray sources.
However, high-resolution transmission diffractometers with a focused Debye-
Scherrer geometry and a small position-sensitive detector are gaining in popu-
larity, especially in the structure solution community. The primary advantage
of a capillary mount is the virtual elimination of preferred orientation effects
that are the bane of flat-specimen geometry.

Another advantage of capillary geometry is that very small amounts of
sample can be examined, down to a few milligrams with careful sample hand-
ling. However, particle statistics can become a problem since very little material
is examined in the experiment. The sample should be finely ground to facilitate
packing in the capillary and should be spun during the data collection to
minimize particle statistics errors.

While changes in sample absorption as a function of diffraction angle can be
neglected in symmetrical flat-plate geometry, absorption of the X-ray beam in
capillary geometry diminishes the low-angle intensities relative to the high-angle
data. A correction, based on jj, (the linear absorption coefficient), R (the
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sample radius) and the packing density ratio, is required to adjust the calcu-
lated intensities during pattern decomposition or refinement (Hill and Madsen
1991).

In the case of very high absorption, it is recommended that the problem
be addressed prior to the collection of data by diluting the sample with an
appropriate low-absorption-coefficient material. For example, diamond powder
has a low absorption coefficient for most useable wavelengths and has a paucity
of lines, resulting in minimum interference with the pattern. Figure 6.1 shows
the effect of sample absorption on patterns collected for (a) pure LaB6 and (b)
LaB6 diluted with 77 weight per cent diamond powder. The few diamond peaks
can be either excluded from the subsequent structure solution and refinement or
included as an internal standard.

6.5.5 Sources of instrument-related error

Detailed discussion of the sources of error in laboratory X-ray applications of
Bragg-Brentano and Debye-Scherrer geometry can be found in Klug and
Alexander (1974) and Jenkins and Snyder (1996). In summary, the major points
to consider in the configuration of a Bragg-Brentano instrument with divergent
beam optics include:

1. View the X-ray tube focus laterally (with a small take-off angle) for the
highest resolution. The use of an incident beam monochromator to
eliminate the Ka2 component further enhances the resolution (Madsen
et al. 1996; Louer and Langford 1988).

2. Sample displacement error causes peak shifts with a maximum at low values
of 20. To minimize this effect, ensure that the sample is positioned
accurately at the centre of the diffractometer.

3. Flat-specimen error causes minor peak asymmetry and peak shifts except
at low values of 20. Reduce the irradiated sample length to reduce the
impact.

4. Axial divergence causes asymmetric peak-broadening with maximum effect
at low and high 20. Insertion of Seller slits into both incident and diffracted
beam positions will reduce the effect (Madsen and Hill 1988).

5. A mis-setting of the 2:1 relationship between the 20:0 axes causes peak-
broadening with a maximum effect at low values of 20.

6. Sample transparency in low-absorption-coefficient samples causes asym-
metric broadening and peak shifts with maximum effect near 90° 20.

The use of parallel beam geometry (such as at a synchrotron source)
eliminates the effects of the displacement, transparency and flat-specimen errors
that plague focusing geometry. Recent advances have seen the development of
multilayer mirrors capable of producing (a) parallel beams from the normally
diverging laboratory source, or (b) focused beams for specific applications
(Gobel 1995; Schuster and Gobel 1996). They can be used to produce high
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Fig. 6.1 X-ray diffraction patterns (Cu Ka) for NIST SRM660 LaB6 in a 0.3 mm capillary
(top) and LaB6 diluted with 77 wt % diamond powder (bottom).

intensities from the small sample volumes encountered with capillary geometry
and can be expected to have considerable impact on laboratory instrumentation
in the future.

6.6 Data collection

Once the sample has been prepared and the instrument configuration selected,
only the conditions under which the diffraction data will be collected remain to
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be determined. What range of d-spacings (diffraction angles or energy) should
be scanned? How frequently should the pattern be sampled? That is, what
angular or energy step interval should be used? How many counts should be
accumulated at each step? This determines the overall pattern intensity, and
hence the counting statistics, which can vary markedly across the pattern and
between individual reflections. Will a constant step counting time suffice, or will
the use of a variable step counting time regime (Madsen and Hill 1994; David
1996) be necessary to provide more uniform, or specifically customized,
counting statistics across the pattern?

Hill and Madsen (1987) have shown that variation in all of these factors have
the potential to influence the outcome of a Rietveld refinement substantially.
Judicious selection of data collection conditions can provide significant
improvement in the accuracy and precision of pattern decomposition and
structure refinement from conventional X-ray diffractometers, and this could
decrease the need to resort to the use of synchrotron or neutron data.

It must be remembered that the fundamental measured quantities (observa-
tions) in a diffraction pattern are the integrated intensities of the reflections. The
intensities collected at each step serve only as multiple, variably-weighted,
estimates of these values. The precision of peak-intensity measurement can be
improved by increasing (a) the counts accumulated at each step, that is
increasing the step counting time T, and (b) the number of points, N, measured
across the peak. Often, the temptation is to collect the data with large values of
N and T to maximize counting statistics across the pattern. However, the
resulting increased precision is only useful up to the point where counting
variance becomes negligible in relation to other sources of error; thereafter
experiment time is wasted. For example, if the sample is affected by the presence
of severe preferred orientation, the collection of highly precise data will not
help. Time would be better spent in remaking the sample and recollecting
the data.

6.6.1 Step time and width recommendations

Hill and Madsen (1984, 1986) have undertaken systematic studies on the effect
of step counting time and step width on Rietveld refined parameters obtained
from constant-wavelength laboratory X-ray data. They have concluded that,
for many relatively simple materials such as corundum, olivine and rutile-type
compounds, it is sufficient to collect from 5000 to 20 000 counts on the top of the
largest peak in the pattern. Beyond this, errors in the preparation and pre-
sentation of the sample and limitations of the model used for fitting the data
dominate the counting errors. However, if one or two large peaks dominate the
pattern, or the pattern is particularly complex, with a high level of peak overlap,
it may be necessary to collect more counts to ensure adequate counting statistics
in the weaker peaks.
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For Rietveld analysis, the step width should be selected to be about 0.2-0.3
times the minimum observed FWHM in the pattern (Hill and Madsen 1984,
1986). This is again based on the fact that at shorter step widths, insignificant
advantages accrue in relation to the precision of the integrated peak intensities,
at a considerable cost in data collection times. Note that the exact value of step
width should decrease with increasing complexity of the diffraction pattern and
the degree of overlap between adjacent peaks. The optimum step width is a
compromise between (a) increasing serial correlation and unnecessarily long
data collection times at short step widths and (b) decreasing intensity precision
at long step widths.

For pattern decomposition, the step width might be less than 0.1 times the
minimum observed FWHM in the pattern for complex materials. A smaller step
width than that used for Rietveld refinement is required since, in pattern
decomposition based only on a unit-cell model for peak positions, it is not
possible to take account of the interactions between the intensities of strongly
overlapping reflections.

6.6.2 Variable counting time data collection

The intensity in constant-wavelength X-ray diffraction patterns is observed to
decrease strongly up to angles of about 100° 20 with a small recovery at higher
angles. There are several physical factors which cause this variation, including
the atomic scattering factors and thermal vibration, but the dominant term (for
X-rays) is the effect of the Lorentz-polarization factor (Madsen and Hill 1994).
While other factors, including reflection multiplicity and absorption (for
capillary geometry), partially compensate for this decrease, there is an overall
change in intensity across the pattern that can be as much as two orders of
magnitude. While neutron patterns also show a decrease in intensity with dif-
fraction angle, the variation is not as large as for X-rays since there is no angular
dependence for the nuclear scattering factors.

As a result of this severe decrease in X-ray peak intensity at higher Bragg
angles, the high-angle data is often deemed to be too 'weak' to contribute to the
analysis and is not collected at all. However, the density of peaks in the mid- to
high-angle region of the pattern is much greater than at low angles. Thus the
high-angle region is potentially able to contribute more information per degree
than the low-angle data. In addition, the high-angle data is more likely to be
largely free from the aberrations (such as surface roughness and instrumental
aberrations) that affect the low-angle data. Furthermore, these data can be
critical to structure solution, especially if a Direct methods approach is used.

The conclusion is that, not only should the high-angle data be collected, but
they should be collected with appropriate counting statistics. Advantages can
accrue if the data are collected in such a way that each reflection receives
approximately the same weighting during data analysis. This can be achieved by
using a variable counting time (VCT) strategy that adjusts the step counting
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time during data collection so that short step counting times are used at low 20
where the average peak intensity is large, and progressively longer times are
used at high 20 to compensate for the intensity fall-off. This ensures that all
moderately-sized peaks have approximately equal intensity, thus providing
near-constant counting statistics across the entire diffraction pattern. Figure 6.2

Fig. 6.2. Rietveld refinement output plots for tourmaline collected with (a) fixed and
(b) variable step counting times using Cu Ka X-rays, Bragg-Brentano geometry. The
observed data are indicated by the points, the calculated profile as the continuous line
overlying them. The lower curve is the difference between calculated and observed while
the short vertical tick marks represent the positions of the allowable Bragg reflections.
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shows plots of fixed and variable counting time X-ray diffraction data collected
using Cu Ka radiation from a sample of tourmaline. The advantages of
employing a VCT strategy as a specific part of the structure solution process
have been demonstrated clearly for both Direct methods of structure solution
(Shankland et al. 1997) and global-optimization-based methods (David et al.
1998).

6.7 Conclusions

Sample preparation, selection of an appropriate wavelength and instrumental
configuration, consideration of the number of reflections to be collected, and
choosing the optimum step width and intensity with which to sample the
powder pattern are all crucial aspects of the process of structure solution and
refinement. Furthermore, different stages of the process place different demands
on the experiment so that these conditions are unlikely to be satisfied by a single
dataset. Thus, it is recommended that separate patterns be collected for
reconnaissance, indexing, decomposition and refinement, each collected
with due consideration of the instrumental configuration and data collection
conditions outlined in this chapter.
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7

Autoindexing

Per-Erik Werner

7.1 Introduction

In principle, all information available in a single-crystal diffraction pattern
is also present in a powder diffraction pattern. Suppose all the pages in a
book have been printed on top of each other on one single sheet. Obviously
everything written in the book is present on the paper, but this does not
mean that we are able to extract the information. Fortunately, however, there
are some special features in a powder diffraction pattern that make it possible
to extract its three-dimensional information in a step-wise manner. Thus, we
can distinguish three different kinds of information: the peak positions, the
peak shapes and the integrated intensities. If not only the peak positions but
also the peak shapes or the intensities had been functions of the unit-
cell dimensions, we would probably never have been able to index powder
patterns.

Powder indexing is important not only in order to find unit-cell dimensions.
It is a way to reconstruct the three-dimensional lattice that produced the
one-dimensional spacing information. Thus, if we want to make use of
the integrated intensities to solve the crystal structure or of the peak shapes
to study size and strain properties of the sample, indexing is a necessary
first step.

The lattice of a crystalline material is also highly diagnostic. Thus, a material
can be registered or identified once any primitive cell that defines the lattice has
been determined. The NBS Crystal Data File contains unit-cell data for many
more substances than the total number of patterns, indexed and non-indexed, in
the PDF 2 database (Mighell and Stalick 1980).

7.2 Basic relations

For reasons to be discussed later, it is often desirable to form the dot product
of a reciprocal-lattice vector with itself:



BASIC RELATIONS 119

Carrying out the dot products and collecting terms yields:

where dhu is the interplanar spacing related to the diffraction angle by Bragg's
law:

For powder indexing, the quantity l/d|y or ^V4uW i§ often designated Qhu-
We shall here use the designation:

but it should be noted that from eqns (7.3) and (7.4) it follows that the differ-
ence between Qhki an<3 sin2 9 is only a scale factor (200/A)2.

For the following discussion, eqns (7.2) and (7.4) are used to define the six ay-
parameters in the following equation:

The parameters ay are related to the reciprocal cell, as shown above, and thus,
also to the direct cell parameters. The number of fly-parameters to determine
varies from one to six, depending on the symmetry (see Table 7.1).

These linear relations between observed g-values and the ^-parameters form
the basis for a large number of powder-indexing procedures.

Table 7.1 Quadratic forms and relations between ay and reciprocal unit-
cell parameters

Symmetry

Cubic
Tetragonal
Hexagonal
Orthorhombic
Monoclinic
Triclinic

an =K-a*2; a22 = K
a23 = K- 2b* c* cosa* ;

Quadratic form

Q = (h2 + k2 + l2)-ail

Q = (h2 + k2)-au + l2-a33

Q = (h2 + hk + k2} • an + 12 • a33

Q = h2 -au + k2 -a22 + l2 • £33
Q — h2-an + k2-a22 + l2- 033 -\-hl-a\T,
Q — h an + k a22 + 1 a33 + hkai2 + kla23 + hla\3

•b*2; a33 = K-c*2; a12 = K-2a*b*cos~f*; a13 = K-2a*c*cosfi*;
K=W4
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7.3 The indexing problem

For each observed g-value we need to find three crystallographic indices (hkl)
for which, in the general triclinic case, the following inequalities are fulfilled:

If the measured Bragg angles, 9, have the same accuracy for all reflections, A
should be a function of 9. In modern least-squares unit-cell refinement
programs, the accuracy in 20 is usually given as an input parameter. However,
indexing programs for unknown powder patterns, where several hundred
thousand trial indexings may be tested, sometimes operate with fixed A-values.
Unit-cell dimensions found by an indexing program for unknown cells should
always be refined later with a separate program where all lines and all conditions
for absences are used. At that stage, the allowed deviations between observed
and calculated values can be given in 29.

In this chapter, individual least-squares refinement programs, not included in
autoindexing programs for unknown unit-cell dimensions, are not discussed. It
should be noted, however, that flexible dialogue programs, where alternative
refinements can be carried out (by using generated single-indexed lines, variable
error bounds, various conditions for systematic absences ((hkl)'s fixed in
agreement with calculated intensities etc.)) are very useful tools for checking and
refining unit cells derived by autoindexing procedures.

The conditions in eqn (7.6) are necessary but not sufficient for a physically
plausible indexing. This is easy to understand from the fact that any powder
pattern can be indexed formally with a cubic unit cell having a cell axis of say
105 A, that is, an K 10 ~6. Then it should be possible to find large integers h, k
and /for which the inequalities (7.6) are fulfilled, with extremely small A values,
for all observed g-values. Obviously, however, this will not be a physically
plausible indexing. We expect the low-angle lines in a powder pattern to have
(hkf)s that are small integers. Thus, regardless of how we index a powder pat-
tern, we need a simple criterion for the physical plausibility of the indexing. One
of the most important contributions to the field of powder indexing was made
by P. M. de Wolff (1968), who successfully derived a figure-of-merit test for this
purpose. The de Wolff figure of merit M2Q is defined by the expression:

Here N2Q is the number of different calculated g values up to Q2Q, which is the
g value for the 20th observed and indexed line; (g) is the average discrepancy in
g for these 20 lines. There are few exceptions from the rule that, if all of the first
20 lines are indexed and M20 > 10, the indexing is physically reliable. Note that
the term 'correct' here may also include indexing with common factors in the
quadratic forms (see Table 7.1). For example, a pattern indexed with all h = 2nis



where N(0g) is the number of different calculated Q values up to Og, which is the
0 value for a selected limit, (A26>) is the average discrepancy in 20 for the number
of observed lines, N, below Og.

The F index is probably superior to de Wolff's M20 index for ranking solu-
tions, but it has a disadvantage when estimating the physical plausibility of a
suggested unit cell. The fact that the M index increases systematically with
symmetry is not a disadvantage. A cubic trial indexing of a powder pattern is
more likely to be correct than a triclinic one, the fraction of observed lines and
accuracy being equal. It should be noted that the de Wolff figure of merit is
defined for exactly 20 lines. According to experience, the FN index does not vary
with the number of lines as much as a generalized MN figure of merit. This may
be the reason _F30 is often reported on the PDF-2 cards.

The de Wolff figure of merit is defined to become (statistically) equal to 1 for
a completely arbitrary indexing. This is the reason for the factor 2 in the
denominator. There is no upper limit for M20, as the discrepancies between
observed and calculated Q values may become infinitely small. Powder dif-
fraction patterns recorded by synchrotron radiation have sometimes been found
to give M20 values in the range 500-700. Values in the range 20-60 are often
obtained for good routine work on pure, well-crystallized samples, when
focusing cameras and an internal standard substance are used, or when dif-
fractometer measurements are made in the way described by NBS. Although
(Q} may decrease with increasing cell dimensions, 7V20 will increase. The
de Wolff figure of merit is not only a test for accuracy in the diffraction data but
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not regarded as incorrect. The a-axis may of course be divided by 2 in the final
least-squares refinement of the unit cell. A less obvious but frequently occurring
example is the indexing of a tetragonal pattern with all h2 + k2 = 5n. Two kinds
of exceptions, geometrical ambiguities and dominant zone problems, will be
discussed below.

De Wolff also stated that if the number of unindexed lines below g2o is n°t
more than two, a value of M20 > 10 guarantees that the indexing is substantially
correct, that is, it may be confirmed by single-crystal data. De Wolff's experi-
ence was limited to a large number of manual tests, and exceptions to this rule
can be found with computer programs for powder indexing, especially in the
case of dominant zone patterns (see below). Experience shows, however, that
such unindexed lines are often found to be impurity lines or represent errors of
measurement. Unless better solutions are found, it may, therefore, be worth
checking solutions with one or two unindexed lines if the de Wolff figure of
merit is high.

Another figure of merit, the F index, has been defined by Smith and Snyder
(1979):
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also a test for how well the calculated pattern will cover the observed one. The
quantity M2o takes account of the amount of'coverage' (i.e. the fraction of lines
actually observed).

Index triples falling under obvious general absences should be disregarded in
computing A^o Therefore, the M2Q values calculated by indexing programs for
unknown patterns should normally be recalculated by a least-squares refine-
ment program where all systematic absences are taken into account. The choice
made by de Wolff to use the first 20 lines is a compromise based on experience.
The number of observed lines should be reasonably large in relation to the
number of unit-cell parameters. On the other hand, the indexing of high-angle
lines is always much more ambiguous, thus adding less to the reliability than the
low-angle lines. It is also a general experience that the error of the measurement
tends to increase with g.

It is impossible to make a rigorous statistical test of the reliability of powder
indexing. Although recent experience has shown that there are cases when
M2Q > 10 is no guarantee of correctness, the importance of the de Wolff figure-
of-merit test in powder indexing can hardly be overestimated.

7.4 The dominant zone problem

The main situation in which the de Wolff figure-of-merit test may fail is when a
dominant zone is present in the pattern, that is, one cell axis is much shorter
than the other two. This has been extensively illustrated by Shirley (1980). The
obvious reason for failure in the figure-of-merit test in such cases is that with
one index equal to zero for most of the low-angle lines, an extra degree of
freedom is introduced in the calculations. The problem may be circumvented,
however, if the indexing program used is designed to start with a dominant zone
test. In extreme cases, when only a few of the first 20 lines depend on the short
axis, one may at least get a clear indication of the existence of a short axis, even
if a reliable indexing is difficult to find.

Another way to circumvent the dominant-zone problem is to use an indexing
procedure that takes advantage of the fact that low-volume solutions are more
likely to be correct. Pseudo solutions may also be revealed by analysing all lines
in the pattern.

7.5 Geometrical ambiguities—derivative lattices

The fact that only the length of the reciprocal-lattice vector, but not the three-
dimensional vector itself, is observed in a powder pattern may cause some
lattices with different, though related, reduced cells to give geometrically
identical powder patterns. Such geometrical ambiguities can only occur between
cells of orthorhombic or higher symmetry. Perhaps the best-known example is
when a hexagonal pattern is (falsely) indexed by an orthorhombic cell having
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the cell dimensions a/2, aVl/2 and c, where a and c are the hexagonal cell
dimensions. Fortunately, it is easily detected, because of the square-root-of-
three relation between two of the orthorhombic unit-cell axes. The problem has
been described and analysed in detail by Mighell and Santoro (1975).

Autoindexing programs will often find a superlattice with twice the volume of
the true lattice or a sublattice with one half of the volume. Super and sublattices
are two forms of derivative lattices as defined by Santoro and Mighell (1972).
Unindexed peaks can occur either from a second phase or from a derivative
lattice. Usually superlattices are easily detected from the occurrence of common
factors in the quadratic forms (see Table 7.1). In order to avoid sublattices—
other than geometrical ambiguities—it is important to include all weak reflec-
tions, especially in the low-angle region (Mighell and Stalick 1980).

7.6 Errors in measurements

Powder indexing would be quite easy if errors in measurements did not exist. As
stated by Shirley (1980): 'Powder indexing is not like structure analysis, which
works well on good data, and will usually get by on poor data given a little more
time and attention. Powder indexing works beautifully on good data, but with
poor data it usually will not work at all.' This has been expressed in several ways
by different authors. Smith and Kahara (1975) stated: 'Our experience with data
recorded by Debye-Scherrer technique has been especially disappointing. The
far greater success with data from focusing cameras reflects greater accuracy
and resolution per se, smaller systematic errors, and greater detectability of
weak reflections. For high-quality diffractometer data, such as the NBS pat-
terns, our experience has likewise been good. However, for data sets having
non-trivial systematic errors, successes have been as limited as with Debye-
Scherrer data.' Shirley (1980) also stated: The paramount importance of
resolution for indexing work explains the high success rate for focusing camera
data, especially from Guinier-Hagg instruments, whose resolution can only be
described as superb. It is rather less common (and considerably more expensive)
to obtain as good resolution with diffractometer data.' As shown by the present
author (Werner 1992) both precision and accuracy in 20 are normally better
then 0.01° in routine measurements of Guinier photographs, if an internal
standard and an automated film scanner system are used. It has been shown by
Louer and Langford (1988), however, that a conventional diffractometer with
an incident-beam monochromator may have an instrument resolution function
with a minimum FWHM as small as 0.065° (20).

Average deviations between observed and calculated 26>-values, determined
by using synchrotron radiation, are often less than 0.002°. Such high data
quality is extremely useful for powder indexing, but normally, indexing prob-
lems must be solved from ordinary laboratory data prior to data collection at
a synchrotron source. With the high peak/background ratio obtained with
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synchrotron radiation, extremely minor impurity contributions may also give
observable diffraction peaks. If intensity differences are very large in the low-
angle range, it may help to omit the very weak lines in a trial indexing. As soon
as a plausible indexing is found, all lines should be tested with a separate dia-
logue program as discussed above.

In the instruction manual for the indexing program ITO, the program author,
J. W. Visser writes: 'Do not use a Debye-Scherrer camera unless the unit cell to
be expected is small. Would you like to solve a jigsaw puzzle when half the pieces
are missing'. From the same manual may also be quoted: 'Finding the unit cell
depends for 95 per cent on the quality of the input data. A random error of 0.03
degrees two theta can usually be tolerated, but a systematic (zero-point) error of
0.02 degrees is probably disastrous. Check your input lines against their higher
orders.'

It is well known that it is possible to obtain accurate ^-values by using an
external standard technique. From the frequency of occurrence of low quality
data in the PDF-2 database, however, it may be concluded that unless an
internal standard technique is used, experimentalists often have very limited
knowledge of the data quality they have obtained. The internal standard method
is recommended for powder indexing, as it can be used not only to correct the
zero-point error but also to correct for sample-dependent 26>-error functions.

In the following, the strategies used by three different indexing programs will
be briefly discussed. They represent three completely different methods.
The programs to be discussed are ITO, DICVOL and TREOR, listed by
McCusker (1992) in a review about integrated software for structure solution
from powder data.

In the programs, different ways are used to express the maximum allowed
discrepancies between observed and calculated data. In ITO and DICVOL,
discrepancies are given in °20, whereas in TREOR, one low-angle and one high-
angle maximum deviation is given in sin 0. In Table 7.2, the maximum accepted
deviations for all three programs are converted to Q values for comparison.
If the input data to TREOR are given as d values (in A) they are normally
converted to sin26> values for Cu Kcci radiation.

Table 7.2 Maximum accepted discrepancy between observed and
calculated Q values versus 2(9 for Cu K.QI radiation. The values are
calculated for the default parameter settings used by the programs. In
all programs the tolerances may easily be changed

20(°) ITO DICVOL91 TREOR90

10 1.5 1.2 3.4
20 3.0 2.3 3.4
30 4.4 3.3 6.8
60 7.6 5.7 6.8
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As only the first 20 lines are necessary for the calculation of M20, it is rare that
diffraction angles above 30° (60° in 26) are used to determine the reliability of
the indexing if Cu Kai radiation is used for the data collection.

By inserting all observed Q values up to a reasonable limit for Qhko and a few
positive integers for h and k, and by storing the absolute value of R, we get

7.7 Indexing programs

7.7.1 ITO

Reciprocal lattice points lying in a plane through the origin constitute a central
zone in reciprocal space, and the corresponding powder lines are said to belong
to the same zone. Any such zone may be described by two variable indices h and
k, and needs only three parameters:

Any two points in the reciprocal lattice, unless they are both on the same line
through the origin, may be used to define such a plane. If they are on the same
line, they may both be described as M)0. The basic idea proposed by de Wolff
(1958) and programmed by Visser (1969) in the indexing program ITO is to
make a systematic search in the array of observed Q values to find as many
points as possible in such a zone. Two Q values, Q' and Q", are selected and
used to define two reciprocal lattice vectors a* and b*, respectively (i.e. Q' = g10o
and Q" = <2oio)- The lengths of the vectors may be written 1/d' and 1/d". Then
from the cosine law, it follows that for any point hkQ in the zone:

where d equals the length of the reciprocal lattice vector and 7* is the angle
between (the arbitrarily chosen) vectors a* and b*. Thus:

Let

Then
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a great number of R \ values, some of which are equal within the limits of
error. From the list of R values, the most obvious concentrations are selected
and the zone angles 7* are calculated. The accepted discrepancies used for this
zone-finding part of ITO is not the same as shown in Table 7.2. The default
value is 3.0 Q units, independent of the diffraction angle. For g10o and 2oio>
combinations of the first two or three lines are usually the most powerful
choices. When the multiplicity factor of a powder line is greater than two, its Q
value represents more than one point in the reciprocal lattice. Therefore,
combination of a line with itself is sometimes very useful, as the corresponding
orthogonal zone occurs rather frequently.

An important feature in ITO is that the zones found are checked for the
length of a* and b* and thereafter reduced. Just a brief list of the steps in the
program is given here. For details see Visser (1969) and the ITO instruction
manual.

1. Find zones and reduce them.
2. Check the lengths of the base vectors and refine the three zone-parameters

with a least-squares method. Calculate an approximate probability, C, that
the zone is found by pure chance:

where Nc is the number of calculated Q values in the zone of which NQ give a
fit, p = (J^ Ag)/gmax. The reciprocal values 1/C are used as quality values
for the zones.

3. Find pairs of zones with a common row and determine the angle between
these zones. This is probably the most difficult step, but it should be realised
that even when ITO does not find a reliable solution to the three-
dimensional indexing problem, it often finds correct zones.

4. Reduce the lattices found and transform if necessary so that the lattice is
described in a standard way.

5. Try to index the first 20 lines of the pattern and repeat this after a least-
squares refinement of the parameters. Calculate M2o and print out the list.

The program has a very flexible input and contains several options, for example
advanced procedures for zero-point correction, not discussed in this short
review.

7.7.2 DICVOL91

DICVOL uses a successive dichotomy method for indexing accurate powder
patterns. The first version of the program was written for orthorhombic and
higher symmetries by Louer and Louer (1972). The method has been extended
to include monoclinic (Louer and Vargas 1982) and triclinic symmetries in
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DICVOL91 (Boultif and Louer 1991). The search of unit-cells is exhaustive
within input parameter limits, although a few restrictions for the hkl indices of
the first five diffraction lines have been introduced in the study of triclinic
symmetry.

The dichotomy method for automatic indexing of powder diffraction pat-
terns is based on the variation of the lengths of cell edges and interaxial angles in
direct space for finite ranges, which are progressively reduced by means of a
dichotomy procedure if they contain a possible solution. With this strategy, an
exhaustive search in an «-dimensional space (n being the number of unknown
unit cell parameters) is performed.

In order to illustrate the method, the procedure used for the cubic search is
described. The cell edge can be investigated from a value a0 up to a maximum
value aM- The variation is made, for example, in steps of ^ = 0.5 A. The a
( = b = c) axis length is tested in intervals of [aQ + np] to [aQ + (n + 1) • p] up to the
chosen aM. For each interval, limits in Q are defined as a function of hkl:

then the interval [aQ + np] to [aQ + («+!)•/>] is divided into two equal parts and
the test procedure is repeated. The procedure is repeated six times. Thus, the
final step length is p/26 = 78 • 10 ~4 A.

The search strategy is to go from high to low symmetries and to use partitions
of volume space, scanning successive 400 A3 shells of volume, except for triclinic
symmetry, where the shells are based on an estimated unit-cell volume Vest.

It has been shown by Smith (1977), from the examination of \JN vs d3 plots
for accurate triclinic patterns, that a simple approximate relation can be derived
for the unit-cell volume as a function of the number of lines TV:

If, within error limits and for all observed Q values (usually the first twenty), hkl
can be found for which:

Corresponding relations can also be derived for higher symmetries, but they are
not very reliable, mainly because the conditions for absences are unknown.

The presence of a common zero index for the first lines of the pattern does not
impede finding the correct cell. As low-volume solutions are likely to be correct,
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pseudo solutions are usually avoided by the fact that small-volume tests are
made prior to large-volume tests.

The monoclinic symmetry is complicated by the fact that only <222 (see Table
7.1) is independent of the monoclinic angle j3. Furthermore, if all observed lines
are located within some limits, each domain has to be divided into 24 sub-
domains by halving the intervals, as the total domain is four-dimensional. In the
triclinic case, the dichotomy method is applied in Q space directly, because the
general relation of Q to the direct cell parameters is too complicated. In order to
reduce the computing times, some restrictions representative of the majority of
experimental patterns with triclinic symmetry are imposed on the first five lines.

The unit-cell parameters are refined by a least-squares method, and figures of
merit (MN and FN) are displayed. In order to help the user, the number of
solutions retained at each level of the dichotomy procedure is printed. An
examination of these numbers can be useful if too strict an absolute error limit
relative to the accuracy of the data has been applied to the input data. An
important feature of the program is its insistence that every observed line must
be indexed, which penalizes data containing impurity lines. It is, of course,
possible to rerun the program several times, omitting suspect lines in a suc-
cessive manner, in order to identify spurious lines due to impurities. The
strategy used by DICVOL, not to index patterns containing impurity lines, has
the advantage that the user is not allowed to ignore unindexed lines.

7.7.3 TREOR90

TREOR searches for solutions in index space by varying the Miller indices, and
Shirley (1980) has classified it as semi-exhaustive. The term was proposed for
programs containing 'judicious deductions to limit the size of the solution field in
order to gain speed.' The first parts of the program were written and described by
Werner (1964), but the computer technology of that time did not allow a rig-
orous implementation of the principles. A more complete program version was
written and published by Werner, Eriksson and Westdahl (1985). The present
version of the program is described in the TREOR90 documentation file.

Although the general principles used for trial-and-error indexing are rela-
tively simple and straightforward, the success of the method is a function, not
only of data quality, but also of a large number of crystallographic decisions put
into the program. Thus, an essential part of the program is a standard set of
parameter values. They are termed normal values and represent accumulated
experience from several hundreds of indexing problems. The parameters are
referred to by keywords, and the user may easily change them. All keywords and
their normal values are listed in a documentation file.

The program will normally start with cubic symmetry and, in a step-wise
manner, test for lower symmetries. Higher order lines automatically correct
the first low-angle lines if present. Trial parameters ay (see Table 7.1) are
derived from base-line sets and it is therefore important that especially the
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low-order lines are accurately measured. Solutions are ranked primarily
according to the number of indexable lines among the first 19, and secondarily
according to the smallest cell volume. Therefore, if no solution is found with
more than, for example, 16 lines indexed in a trial phase, such unit cells may be
saved temporarily and later refined by a least-squares method. Trial cells are not
rejected because one or more lines cannot be indexed. This is avoided because of
the experience that it is usually impossible to identify an extraneous line a priori.
Furthermore, a small error in one or more of the base-lines may seriously affect
the trial parameters. The fact that several different base-line sets are tested
usually makes it possible, however, to find a correct solution. Dominant zone
tests are made for orthorhombic and lower symmetries. An algorithm for suc-
cessive reduction of trial-cell volume is used in monoclinic and triclinic tests,
and therefore, the user does not normally need to restrict cell volumes to values
below 2000 A3 or cell edge maxima below the default value of 25 A.

If a satisfactory solution is found (i.e. normally an indexed pattern with
M2Q > 10 and not more than one unindexed line among the first twenty), a short
output list containing only this solution is printed after least-squares refinement.
If the unit cell is monoclinic or triclinic, the reduced and the conventional cells
are derived. The reduction is only valid, however, if the cell is primitive.
Instructions are also given on how to rerun the program in order to test for
better solutions. This is important, because although the first solution found is
often the best one, this is not always the case.

If no satisfactory solution is found, the user can inspect the general output
list. This list may contain a large number of more-or-less possible indexing
solutions with M2Q > 6 and not more than three unindexed lines among the first
twenty. This often makes it possible to identify impurity or badly measured lines
in the pattern.

7.7.4 Why more than one indexing program?

As stated above, all indexing procedures are strongly dependent on the quality of
the input data. Crystallographers working in the field of powder indexing have
also often focused on accurate measuring systems. The indexing programs are
dependent on the data quality in somewhat different ways, however. Further-
more, derivative lattices, which are often found by indexing programs, are
sometimes detected by comparing output lists from different programs.

The programs ITO and TREOR are especially dependent on accurate
low-angle data, because the first lines play an important role in the indexing
strategies, whereas for DICVOL, data errors play a role independent of the
diffraction angle. A multitude of non-systematic absences can make it impos-
sible to find a solution with ITO, but is of much less importance for DICVOL or
TREOR. As ITO employs a general triclinic approach to the indexing problem,
whereas DICVOL and TREOR use relatively strong restrictions in the triclinic
tests, it can be expected that ITO will sometimes solve triclinic problems that
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cannot be solved by the other two programs. DICVOL is less dependent on
dominant zone problems than TREOR, although this part of the program has
been improved in the TREOR90 version. ITO and TREOR contain many
options not described in this short presentation, which make them very efficient
for a user who is familiar with all details in the programs. In order to take
advantage of these opportunities, however, the user will need some experience
with the programs.

Given the exhaustive strategy used by DICVOL, one would expect that all
patterns of monoclinic and higher symmetries would be correctly indexed, if the
measurement is of reasonable quality. Unfortunately, however, impurity lines
and/or individual lines strongly affected by overlaps occur frequently. Other
programs sometimes identify such lines via solutions with high M20 values and
one or two unindexed lines, whereas DICVOL will not pinpoint a possible
impurity line. As stated above, however, the number of solutions retained at
each dichotomy level may be a useful error indicator. In the program version
DICVOL04 (Boultif and Louer 2004) a tolerance to the presence of impurity
lines has been added.

A mistake that is often made is to use more than the first 20-25 lines in the
indexing programs DICVOL and TREOR. It is important to include all lines
and all systematic extinction conditions in the final least-squares refinement of
the unit-cell dimensions. At that stage, all lines should be carefully checked. The
reason one should avoid using high-angle data in the first trials to find the basic
solution to the indexing problem is that errors, which are much more frequent in
the high-angle region, may completely rule out the possibility of finding a
solution. DICVOL will not accept any unindexed line and TREOR may use
erroneously indexed lines in trial refinements and thus lose correct solutions.
The strategy used by ITO, however, is probably optimal for about 35 lines.

Powder indexing is only partly a mathematical problem. The chemical and
structural information contained in the pattern is also of importance. The main
reason that indexing programs allow for one or two lines to be discarded if they
cannot be indexed is that impurities are often present. An unindexed line should
be carefully checked from a chemical point of view. If it can be identified as the
strongest line from a chemically possible impurity, the validity of the unit cell
found is strengthened. It may be added that this is a frequently occurring
situation, as can also be seen from the fact that several complete structure
determinations from powder patterns during recent decades have been made
from two-phase samples.

7.8 Computing times

With modern computers, all three indexing programs discussed above are very
fast for orthorhombic and higher symmetries. CPU times for lower symmetries
usually increase in the order: ITO < TREOR90 < DICVOL91. ITO is very fast
regardless of the symmetry. For TREOR90, computing times may vary from
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less than one second to around thirty seconds on a IGHz Pentium-4 based PC.
For DICVOL91, CPU times for the monoclinic symmetry can be rather long.
As stated above, if a solution is found by TREOR, the problem should be run
again with stronger restrictions in order to test for better solutions. One may
agree, however, with the statement by Boultif and Louer (1991) that 'if a
solution is found for the time-consuming examples, time is probably unim-
portant, particularly if an ab initio structure determination follows this geo-
metrical reconstruction of the reciprocal lattice.'

7.9 The PDF 2 database

A search of the 59 847 non-deleted patterns in the PDF 2 database, sets 1-44, to
determine the frequencies of different unit-cell symmetries shows that the group
of unindexed patterns is indeed the largest one (Table 7.3).

In dataset 44, there are 521 unindexed patterns, that is, 26 per cent. The lowest
number of unindexed patterns, is found in dataset 25 (297, i.e. 12 per cent). The
ACA subcommittee's final report, standard for the publication of powder pat-
terns (Calvert et al. 1980), comprises an investigation of inaccuracies of ^-values
in PDF 2. It was found that the average value of | A26>| for all 1638 cubic
patterns in sets 1-24 is 0.091°, whereas especially for the cubic patterns published
by NBS, the average of | A26> | is 0.015°. Hopefully, data quality has improved
since 1980. Although examples can be given of non-indexed powder patterns in
PDF 2 that can be indexed with reasonable confidence with modern programs
(e.g. PDF no: 37-166 [deleted patterns], 36-21, 36-22, 38-668, 40-66, 43-603,
43-604 and 43-913), there are probably not very many. It seems reasonable,
however, to assume that the main reason for the large number of non-indexed
patterns in the database is to be found in the low quality of the data. This
statement is also strongly supported by the fact that computer indexing of
powder patterns published by NBS is successful almost 100 per cent of the time.
However, impurity lines in these patterns are (probably?) omitted in the editorial
procedure.

Table 7.3 PDF 2, sets 1-44

Symmetry

Cubic
Rhombohedral
Tetragonal
Hexagonal
Orthorhombic
Monoclinic
Triclinic

Number

6669
2187
5396
5540
8510
8063
1666

%

11.1
3.7
9.0
9.3

14.2
13.5
2.8

Unindexed 21816 36.4
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Table 7.4 Differences in 2(9 as a
function of change in <5?-value

4A) A(°20)

3.00^3.01 0.10
2.50^2.51 0.15
2.00^2.01 0.24
1.800-> 1.801 0.03
(1.7995-> 1.80149) 0.06

Table 7.5 Changes in ^-values for
some selected 29 if A(20) = 0.03°

20Q 4A)

9.00^9.03 9.82^9.78
20.00^20.03 4.436^4.429
36.00^36.03 2.4927^2.4909
72.00^72.03 1.3105-> 1.3100

For training, the reader can try to find the most likely unit-cell dimensions for
the examples listed above.

If the observed ^-values are given with too few decimal places (as in Table 7.4),
it is usually a waste of time to try any indexing procedure (Werner 1976). Even if
a correct solution can sometimes be found by using wide error bounds, the risk
of obtaining false solutions is high. The data in the Tables 7.4 and 7.5 are
calculated on the assumption that the radiation used is Cu Kc^.

It is recommended that d>5.00A be reported to 2 decimal places,
5.00A<fi?<2.500A to 3 decimal places and d<2.5000A to 4 decimal places.

7.10 Comments

The indexing programs discussed above have not been chosen in an objective
way, although they represent three different approaches to the problem. It
should be mentioned, for example, that other programs working in index space
have been written by Taupin (1973), by Kohlbeck and Horl (1976, 1978) and by
Smith and Kahara (1975). An indexing program using dichotomy methods has
also been written by Neumann (2003). A special search procedure proposed by
Smith and Kahara for the (020) reflection in monoclinic patterns has also been
implemented in TREOR. Quite recently, Kariuki and co-workers (1999) have
described an approach that involves indexing powder diffraction data by using a
whole-profile fitting technique and a genetic-algorithm-based global-optimiza-
tion method. Altomare and co-workers (2000) have also incorporated the

132
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TREOR90 program into a more extensive peak search and cell-refinement
framework.

A subroutine named 'biblio', containing a large number of useful references
about powder indexing up to 1984, is included in the Fortran source code of the
ITO program, and more recently, Louer (1992) has written a general article
about automatic indexing.

It is not the intention of the present work to recommend or to judge the
efficiency of specific indexing programs. It is strongly recommended, however,
that it is better to have different programs using quite distinct and com-
plementary methods available. A list of indexing programs is given on the
Internet at http://www.ccpl4.ac.uk/solution/indexing/. The CRYSFIRE
program of Shirley, which generates input for the most common indexing
programs, can also be found there. As discussed above, the limitations tend to
affect different programs in different ways. Although deductive and semi-
exhaustive programs may require more experience to take full advantage of all
facilities, it is important in all computerized indexing procedures to know how to
change the error limits in a step-wise manner if indexing is not successful. This is
also strongly related to experience with the actual sample and measuring
system.

Appendix: (Most likely) unit-cell dimensions for selected PDF-2 powder
patterns

PDF 37-166
Cs2V6O16 (deleted pattern) (see PDF 4(M54 and 40-456)
Monoclinic: a = 8.169A, 6 = 8.508A, c = 4.985A, (3 = 95.52°, F=344.6A3,
M20= 16, ̂ 23 = 18(0.021, 63).

A B-centred cell (V= 688 A 3 ) can be found. It can be transformed to (an arbi-
trary) primitive cell by MODCELL. The cell can then be reduced and rewritten to
the conventional cell given above by REDUCT. Finally, the dialogue program
PIRUM can be used for refinement. (Several other programs listed by S. Gorter
and D. K. Smith in the World directory of powder diffraction programs. Release
2.12 (1993) can be used. The programs discussed here, as well as a stand-alone
version of N-TREOR, are available from the present author.) PIRUM can be
used for analysis and least-squares refinement of all examples reported below.

PDF 36-21
NaAl(HPO4)2

Monoclinic: a = 7.820 k,b = 9.427 A, c = 8.427 A, (3 = 108.83°, V= 587.9 A3

M20 = 22 (C-centred cell), F30 = 31 (0.017, 58)

PDF 36-22
NaGaH5(AsO4)3 H2O

http://www.ccp14.ac.uk/solution/indexing/
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Orthorhombic: a = 15.968 k,b= 14.008 A, c = 4.6632 k,V= 1043 A3

M20 = 72, ̂ 30 = 163 (0.004, 31)

PDF 38-668
Ba2Mo5O17

Monoclinic: a = 14.690 A, b = 7.564 A, c = 6.958 A, (3= 100.39°, V= 760.5 A3

M20 = 23, F24 = 43 (0.011, 52)

Figures of merit are dependent on the number of lines used in the refinement.
The cell parameter values change gradually with the number of lines (up to 66)
included in the refinement. The pattern has a curved 0 scale. The line at
fi?=3.4500A can be identified as an impurity line. On the PDF-card it is
reported that MoOs was used for the synthesis and has its strongest line at this
lvalue (see PDF 21-569).

PDF 40-66
Mg(H2P04)2

Monoclinic: a = 7.381 A, b =15.237 A, c = 5.313 A, (3 = 97.84°, F=591.9A3

M20 = 13 (OkO = 2«), F21 = 18 (0.021, 56)

PDF 43-603
Eu2O(CO3)2 • H2O
Orthorhombic: a = 8.454 A, b = 7.097 A, c = 4.8969 A, V= 293.8 A3

M20 = 30, ̂ 30 = 34 (0.014, 63)
Note: a/c= 1.7267, see PDF 43-604 (geometrical ambiguity?)

PDF 43-604
Gd2O(CO3)2 • H2O
Hexagonal: a = 9.744 A, c = 7.063 A, V= 580.8 A3

M20 = 29, F3Q = 28 (0.022, 49)
A possible geometrical ambiguity.
Orthorhombic: a = 7.070 A, b = 8.435 A, c = 4.878 A, V= 290 A3

M20 = 53 Note b/c = Vl (see PDF 43-603)

PDF 43-913
Bi12Ni58S30

Orthorhombic: a= 11.394 A, 6 = 7.813 A, c = 6.351A, F=565A3

M20= 17, ̂ 27 = 20(0.017, 81)
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Extracting integrated intensities from powder
diffraction patterns

William I. F. David and Devinderjit S. Sivia

8.1 Introduction

This chapter deals with the theoretical aspects of extracting integrated inten-
sities from a powder diffraction pattern and with the ancillary issue of space
group determination. Extracting integrated intensities is a relatively straight-
forward stage in the structure solution process. Two principal techniques have
been developed. The first of these, the iterative Le Bail method (Le Bail et al.
1988) based upon Rietveld's original method (Rietveld 1969) for determining
observed structure-factor magnitudes, is discussed in Section 8.2. The second
method originally proposed by Pawley (1981) is a constrained linear least-
squares approach and is outlined in Section 8.3. A comprehensive review of the
origins of whole powder pattern decomposition methods and their application
to structure solution has been undertaken by Le Bail (2005).

Although extracting integrated intensities is, in principle, not difficult, it is
this stage in the structure solution process that highlights most clearly the loss of
information in a powder diffraction measurement. This loss comes from the
inevitable overlap of Bragg reflections resulting from the collapse of the three
dimensions of reciprocal space onto the single dimension of a powder dif-
fraction pattern. Overlap may be exact because of the equivalence of reflection
J-spacings or accidental resulting from near-equivalent J-spacings that are
separated from one another by an amount less than the resolving power of the
instrument. Exact overlap occurs in crystal systems with higher than ortho-
rhombic symmetry; typical examples include the 437 and 507 reflections in the
tetragonal system, the 707 and 537 reflections in the trigonal or hexagonal sys-
tems, and the 333 and 511 reflections in the cubic system. Accidental overlap can
occur in high-symmetry systems, but mainly occurs in orthorhombic or lower
systems because of the increased number of independent reflections. The excel-
lent resolution available at modern X-ray synchrotron and neutron powder
diffractometers can result in up to several hundred resolved Bragg peaks.
However, as sin 0/X is increased, accidental overlap must occur and this limits
the complexity of problems that may be tackled. Although Bragg peak overlap
is inevitable in a powder diffraction experiment, several theoretical and
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experimental methods have been put forward to overcome this difficulty.
Theoretical approaches are discussed later in this chapter in Section 8.5. Two
successful experimental methods for overcoming Bragg peak overlap are
described in Chapter 9.

How severe is the problem of Bragg peak overlap? Consider a reciprocal
lattice with volume, V* = l/V. The number, N, of Bragg reflections is simply the
number of reciprocal lattice points with d* = (l/d) less than a maximum reci-
procal distance d*m^ and is given by N = fv^^/F*. Clearly, in a powder
diffraction pattern, all reflections with the same j-spacing are overlapped and
so the number of reflections, assuming that Friedel's law is obeyed, between
d* and d* + Ad* is given by the number in the corresponding shell in reci-
procal space, A.N(d*) = 2-n-Vd*2Ad*. This formula presumes triclinic sym-
metry but is also approximately valid for monoclinic and orthorhombic
symmetries if V is considered to be the volume of the asymmetric unit.
Multiplication by the appropriate Jacobian leads to a number density as a
function of 20 given by

This formula highlights the overlap problem for the solution of moderately
large crystal structures. The number of peaks scales linearly with the unit-cell
volume and varies inversely with d2 for long d (>A).

It can be seen from Fig. 8.1 that there is a clear maximum in the peak
density. The precise theoretical position of this maximum occurs at
20 = 2tan~1(V/2) = 109.47° and can be calculated by differentiating eqn (8.1)

Fig. 8.1. The average number density of peaks as a function of 29° for copper radiation
(solid line) and cobalt radiation (dashed line) for a unit cell of volume 1000 A3.
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with respect to 20. The maximum peak density is then found to be equal to

Sheldrick's rule (http://shelx.uni-ac.gwdg.de/SHELX) states that, for routine
structure solution by Direct methods, diffraction data should be collected down
to around 1 A. For standard laboratory data (A =1.54 A), J-spacings of 1 A
occur at 100° near the maximum peak density. The number of peaks in a one-
degree range at d= 1 A is then approximately equal to

Peak separations, A20, for low-symmetry systems are essentially random
and thus follow an exponential probability distribution, />(A2$ < 6) = 1 —
exp(—AM>). Assuming no sample broadening and a best full width at half
maximum (FWHM) resolution of 0.06° implies that over 60 per cent of the
peaks are within one FWHM of another Bragg peak for an asymmetric unit
volume of only 360 A3. For organic structures, this signals problems for modest
molecules containing as few as 20 non-hydrogen atoms. This overlap problem
may be to some extent resolved by using longer wavelengths such as cobalt
radiation (see Fig. 8.1) although sample-broadening effects may diminish this
potential improvement. Of course, the best resolutions are achieved at syn-
chrotron sources (see Chapter 4). Take, for example, BM16 at the European
Synchrotron Radiation Facility (ESRF). However, even with A = 0.8 A and
a FWHM of 0.01°, the limiting volume of the asymmetric unit only doubles
to around 800 A3. Although giving access to molecules with up to 40 non-
hydrogen atoms, this is still a rather modest volume for organic structures.

8.2 The Le Bail method

8.2.1 The origins of the Le Bail method

The origins of the Le Bail method are to be found in the early pioneering work
of Rietveld (1969). Rietveld proposed a simple yet elegant summation approach
to the evaluation of an observed structure-factor magnitude for partially
and indeed completely overlapped reflections. It is worth considering in detail
Rietveld's summation method with a simple two-peak example. Figure 8.2
shows a portion of a diffraction pattern with two overlapping peaks.

The calculated diffraction pattern is good but not excellent and it is clear that
the observed and calculated structure-factor magnitudes are different from one
another. In this example, the observed value for the first reflection is sig-
nificantly larger than the calculated value; the observed value for the second
reflection is slightly smaller than has been calculated. Rietveld's approach was
simple. The peak area is proportional to the square of the structure-factor

http://shelx.uni-ac.gwdg.de/SHELX
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Fig. 8.2. A Rietveld fit for two overlapping peaks. The observed data are shown as circles
while the fitted pattern and solid lines represent individual calculated peaks.

Fig. 8.3. The individual peaks contributions (solid lines) towards the observed peak area
as calculated by the method originally proposed by Rietveld (1969).

magnitude and the problem thus reduces to finding the peak area. For an iso-
lated peak, the observed peak area is easy to evaluate. All that needs to be done
is to add together the background-subtracted profile points. For overlapping
peaks, the contribution for a given reflection is weighted by the calculated peak
contribution for that reflection divided by the sum of the calculated peak values
for each contributing reflection. This is illustrated for the two-peak example in
Fig. 8.3.

LE BAIL METHOD
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The 'observed' integrated intensities for the two reflections are given by the
following formulae:

where Ak=jk\Fk\
2 are the integrated intensities, (jk and \Fk are the reflection

multiplicity and structure-factor magnitude respectively), qk(f) = Ck(i)Hk(i) is
the product of c^.(z) (which contains Lorentz-polarization, absorption and
extinction terms) and H^i), the normalized kih peak shape, and obs(i) — back(i)
is the observed peak contribution at the z'th point in the diffraction pattern.

Combining eqns (8.4) and (8.5) gives

which indicates that the sum of the observed peak areas evaluated by Rietveld's
algorithm is always equal to the background-subtracted area of the observed
Bragg peaks in the powder diffraction pattern. This has been the standard
approach for thirty years for extracting estimates of structure-factor magni-
tudes and has been successfully applied to numerous problems.

8.2.2 The iterative Le Bail algorithm

Le Bail et al. (1988) noted that the Rietveld approach to obtaining estimates of
structure-factor magnitudes could be extended to the situation where there is no
initial structural model. If the structure is unknown and, as a result, no calculated
structure factors can be generated, then the simplest thing to presume is that all
the integrated intensities are initially equal.1 The particular initial value does not
matter as the sum rule expressed in eqn (8.6) ensures that the observed integrated
intensities are correctly scaled. Clearly, after one iteration, isolated peaks will
have an observed intensity equal to the observed area under the Bragg peak. For
overlapping reflections, the procedure has to be tackled iteratively. The Le Bail
method is, thus, a recursive version of the original Rietveld approach to observed
structure-factor magnitude evaluation where the observed peak areas for the
rth iteration are used as the calculated peak areas for the (r+l)th

1 Strictly speaking, without prior knowledge of the crystal structure, the expectation values of the
peak areas of neighbouring Bragg reflections are the same and not the structure-factor magnitudes
(Bricogne 1991).



Fig. 8.4. The individual peak intensities for the two overlapping peaks shown in Figs 8.2
and 8.3 evaluated iteration by iteration by the Le Bail method, (a) with initial values of
1 for both peaks and (b) with different initial values of (500, 500) (solid line), (100,900)
(dashed line) and (900,100) (dot-dash line).

where A[n~l}(obs) = 1 V« = 1 , . . . , N .
Applying this recursive algorithm to the two-peak example shown in Fig. 8.2

rapidly leads to good estimates of the Bragg peak areas. Figure 8.4(a) shows the

iteration. Generalizing to TV-peak overlap, this may be written mathematically as

LE BAIL METHOD 141
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rapid convergence of the Le Bail method in a few iterations despite the initial
assumption of unit-peak area. Indeed, Fig. 8.4(b) illustrates that the Le Bail
algorithm in this well-conditioned example is robust with respect to the initial
starting values of the Bragg peak areas. In only five iterations, the Le Bail
algorithm has lost all memory of the initial starting values. This robustness is
valuable since it implies that the integrated intensity estimates derived from the
Le Bail method may generally be treated with confidence.

As a corollary, however, it highlights the difficulty of using the recursive
Le Bail method for incorporating prior knowledge about structure-factor
magnitudes by using these values as the starting point for the iterative process.
Figure 8.4(b) shows that for differing starting points, very different values are
obtained for first, second and third iterations. Since there is no statistical pre-
ference for any particular iteration, it is difficult to know which iteration to
select and so the Le Bail method cannot be considered to be a robust method for
incorporating prior structure-factor-magnitude information. Nevertheless,
some authors have used this approach to some advantage (Altomare et al.
1996)—see also Chapter 11.

Although the Le Bail method is generally robust and converges relatively
rapidly, there are occasional instabilities. Figure 8.5(a) illustrates such a situation.

The two peaks are in the same positions and have the same widths as those
in Fig. 8.2 but are ten times weaker. Furthermore, the background has been
slightly overestimated. For weak peaks, this is not an uncommon occurrence.
The Le Bail estimates, iteration by iteration, are shown in Fig. 8.5(b) and are
chaotically oscillatory with the appearance of negative intensities upon occa-
sion. Mathematically, this occurs because the overestimated background leads
to both positive and negative contributions (and, as a consequence, occasionally
contributions that are very small) to the denominator in eqn (8.7). In general,
however, with strong peaks and correctly determined backgrounds this does not
occur, and the Le Bail method offers a pragmatic and successful approach to
extracting integrated intensities from a powder diffraction pattern.

Perhaps, the single most important aspect concerning the popularity of the
Le Bail method is its ease of incorporation into standard Rietveld codes since it
is an iterative adaptation of Rietveld's original method for estimating observed
structure-factor magnitudes. Most main Rietveld codes include this small
modification, which has in turn ensured the wide use of the Le Bail method.
Although the estimated standard deviations of observed intensities are not
normally included as part of the standard Le Bail approach, they may never-
theless be evaluated. Indeed, the fully correlated integrated intensities weight
matrix (the inverse of the integrated intensities covariance matrix) may be easily
evaluated in exactly the same way as in the least-squares Pawley method (see
Section 8.3.2). Access to this matrix allows rapid calculation of the powder
diffraction pattern for structure solution based upon integrated intensities
extracted by the Le Bail method. This approach has been used successfully by
Pagola et al. (2000).
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Fig. 8.5. (a) Two weak overlapping peaks. The observed data are represented as circles
with lines representing the estimated standard deviations. The background (dashed line)
has been slightly over estimated, (b) The Le Bail estimates of the two peak areas shown in
Fig. 8.4(a) show wild, chaotic behaviour iteration by iteration.

8.3 The Pawley method

8.3.1 Introduction

Pawley (1981) published a method for determining Bragg peak intensities from
powder diffraction data in the absence of a structural model. The principle
behind the Pawley method is quite simple. The Rietveld method involves
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the least-squares analysis of a powder diffraction pattern where the variables are
(a) peak position parameters (cell parameters and zero-point), (b) peak-shape
parameters and (c) parameters dependent on the peak area (i.e. atomic coor-
dinates, anisotropic displacement parameters, absorption and extinction para-
meters). The Pawley method is also a least-squares analysis of a powder
diffraction pattern but while the variables associated with peak positions and
widths are the same, the variables associated with the peak areas are simply the
peak areas themselves. Thus, no structural model is required. Despite the fact
that the statistical basis of the Pawley method is far more robust than the
Le Bail iterative method and, although the Pawley method was introduced
some six years earlier than its counterpart, the Le Bail method is currently still
the more popular approach. There are two reasons for this—availability of
code and perceived weaknesses in the Pawley method. These are addressed in
the following section.

8.3.2 Mathematical background

The mathematical description of the model value for a point in a powder
diffraction pattern may be written as

Obtaining peak areas is a linear least-squares problem and may be achieved by a
single matrix inversion:

The derivatives with respect to A^ =jk\Fk 2 are easY to evaluate and when set to
zero give the best-fit criterion with respect to peak areas.

where the summation is over all peaks that contribute to the z'th point in the
pattern and the symbols are the same as in Section 8.2.

In the Rietveld method, explicit functional forms and derivatives for the
structure factors with respect to structural parameters must then be evaluated.
For the Pawley method, the structure-factor magnitudes may be evaluated
simply by minimizing the summed weighted difference between observed (XO)
and model (M(z)) diffraction patterns:
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Fig. 8.6. A linear least-squares Pawley fit (solid line) for the two overlapping peaks
illustrated also in Figs 8.2 and 8.3. The dashed lines show the individual peak shapes.

where

All the important statistical quantities are immediately available. The inte-
grated-intensities covariance matrix, for example, is given by Chk = (Hhk)~

1.2

Indeed, instead of being an iterative approach, the Pawley method solves the
integrated intensity extraction problem in a single matrix inversion. When peak-
shape parameters and lattice constants are known, the integrated intensities are
obtained in a single least-squares cycle. In the two-peak example discussed in
the previous section, this linear least-squares approach returns peak intensities
of 897 ± 3 and 499 ± 1 (see Fig. 8.6). The —3 per cent correlation between the
two peak areas is very small indicating that the peaks are essentially indepen-
dent of one another (David 1999).

The simplicity of the mathematics associated with the Pawley method, how-
ever, belies a number of practical problems. Perhaps the most straightforward of
these is that the algebra outlined above necessitates more substantial mod-
ifications to existing Rietveld codes than the Le Bail method. As a consequence,
there are fewer generally used computer programs based upon the Pawley
approach. More significantly, the matrix H/,k is large (order = the number of

2 A discussion of the use of integrated intensities for structure solution is given in Chapter 15.
Note that a large matrix inversion is required to obtain the integrated-intensities covariance matrix
irrespective of whether the Le Bail or Pawley methods are being used.
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reflections) and usually degenerate. The size of the matrix is not a serious
problem because the matrix itself is highly sparse (all the non-zero terms are
close to the matrix diagonal as they can only arise from overlapping peaks) and
thus, can be easily inverted in block diagonal form. From a practical point of
view, however, most Pawley programs do not invoke sparse matrix inversion
and thus, are limited to a few hundred reflections which, though small compared
with the number of reflections in many powder diffraction patterns, are suffi-
cient for structure solution.

The degenerate nature of the matrix again, in principle, is easy to overcome
but has, in practice, proved to be more difficult to handle. Degeneracy occurs
when two rows (or columns since the matrix is symmetrical) are identical to one
another and happens when two or more peaks are almost exactly overlapping.
This can be avoided by grouping together reflections that are closer than a
particular criterion such as a quarter of a FWHM. Experience with our own
algorithms suggests that a better criterion is a proportion of the step size in the
powder diffraction pattern. It might reasonably be considered that peaks that lie
less than one step size apart when treated separately lead to ill-conditioning on
matrix inversion. Experience, however, has shown that stable inversions are
obtained when peak separations are as little as 0.5 step sizes (corresponding to
less than 0.1 FWHM) apart. Other authors have found a two-stage approach to
be successful (Jansen et al. 1992a).

Although stable refinements are achieved, close peak separation often leads
to the appearance of highly negative intensities, which have generally been
considered to be problematical by the powder diffraction community. How, for
example, can one take the square root of a negative number to obtain a
meaningful structure-factor magnitude? Various approaches have been elab-
orated to deal with this problem. Pawley, in his original implementation of his
program, introduced Waser-type constraints (Waser 1963) to minimize the dif-
ferences between neighbouring integrated intensities. This ingenious approach
can eliminate negative intensities but does increase the number of iterations and
can lead to instabilities. Other authors (Sivia and David 1994; Engel et al. 1999;
Coelho 2000) have enforced positivity by refining not on the integrated inten-
sities but on the structure-factor magnitudes themselves. The least-squares
process is no longer linear and thus, convergence is slower and can take many
iterations to complete.

Sivia and David (1994) proposed another method based upon probability
theory that enforced positivity through a Bayesian prior probability approach.
The procedure is rapid, robust and reliable and leads to all positive intensities
that can be used successfully for structure solution (Shankland et al. 1997). The
method is illustrated by a two-peak example taken from the paper of Sivia and
David (1994). The results of a Pawley refinement are shown graphically as a
probability distribution function in Fig. 8.7(a). The contours represent the
results of the Pawley refinement that give refined values of —5 ± 25 and 14 ± 11
for the two peak intensities.



Fig. 8.7. The probability distribution function derived from a Pawley refinement for two
strongly overlapping peaks shown (a) as a function of \F\2 and (b) as a function of \F\.
The grey contours represent the combined information from the Pawley refinement and
enforcement of positivity. The dotted contours in (b) are the best-fit multivariate
Gaussian distribution to the probability distribution function.
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The peaks are extremely close together and this is reflected in the high
negative statistical correlation of —97 per cent between the two peaks. The
appearance of a negative intensity is usually taken to be problematical.
Figure 8.7(a), however, illustrates that the refined negative intensity only indi-
cates the top of the probability distribution. There is significant probability that
both peaks are positive. The Bayesian approach incorporates precisely this prior
assumption—namely that the peaks must be positive. The only acceptable part
of the probability distribution is then, the grey-shaded area in the positive
quadrant of Fig. 8.7(a). This truncated probability distribution is now highly
non-Gaussian. However, transforming to \f] space (which is allowed as only the
positive quadrant has a finite probability) results in a banana-shaped dis-
tribution shown in Fig. 8.7(b) that is more closely Gaussian and can indeed be
approximated by a multivariate Gaussian distribution (dotted contours in
Fig. 8.7(b)). This transformation is stable and rapid and yields \F\ values of
3.2 ± 1.8 and 2.8 ±0.9 with a correlation of -87 per cent. At first sight it is
rather unexpected to find that the first F value is larger than the second as the
average \F\2 value for the first peak was negative. However, the large estimated
standard deviation of the first peak implies a high probability of relatively large
structure-factor values which propagate through to the final \F\ result. After
structure solution, the calculated \F\ values for the two peaks were 3.1 and 2.6,
which provides satisfactory evidence of the efficacy of the Bayesian approach.

This section would not, however, be complete without a final caveat for all
integrated intensity extraction methods. When the Bragg peak overlap is so
substantial at high angle that no clear Bragg peak-shapes are visible against the
background, all methods must be considered unreliable. Unlike the Rietveld
method, where the crystal structure constrains the size of the Bragg peaks, the
ability to discriminate between peak and background disappears. Although this
can be accommodated mathematically using the full covariance matrix that
includes both peak intensities and background coefficients, there is little
information content in these reflections and they are best left unused for
structure solution.

8.4 Space group determination

Traditionally, space group determination from powder diffraction data is per-
formed manually by inspection of the systematically absent reflections. In
monoclinic symmetry, for example, it is usually relatively easy to distinguish
between the small number of space group options. Strictly speaking, exam-
ination of the space group absences in a powder diffraction pattern only indi-
cates the extinction symbol (Vos and Buerger 1993) often leaving a small
ambiguity about the precise space group. For example, the extinction symbol
associated with the space group, P 2\ (ft-axis unique), is P - 2\ - which is shared
with space group P 2i/m (ft-axis unique). In other words, both space groups
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share the same systematic absences which are k = 2n+ 1 for OfcO. On the other
hand, the extinction symbol, P - 1\]c -, is unique to the common space group,
P 2i/c (ft-axis unique); the absences QkQ, k = 2n+l and M)/, /=2«+ 1 uniquely
determine that space group. Although it is, in principle, possible to distinguish
between different space groups that possess the same extinction symbol by
evaluating intensity statistics, it is a much more difficult task than the equivalent
process with single crystal data. This is because the substantial degree of Bragg
peak overlap in a powder diffraction pattern generally makes the differences
between centric and acentric reflection distributions effectively impossible to
detect.

Bragg peak overlap can clearly cause difficulties with determining absences.
For low Miller indices associated with long ^-spacing reflections, the problem
is rarely severe even for low-resolution laboratory powder diffraction data.
However, for higher Miller indices (typically 5 and above) reflections that may
be absent often overlap with reflections that are present for all space groups.
This means that the manual decision about a particular space group is often
made on the basis of a small number of low-index reflections; most of the
information in the diffraction pattern is rejected in the visual determination of a
space group. One obvious way forward is to profile fit the diffraction data using
either the Le Bail or Pawley methods. These give a stronger indication of the
presence or absence of a Bragg peak. Full use of the integrated-intensities
covariance matrix gives the best evidence for the presence or absence of a peak.
The profile .R-factor or integrated intensities chi-squared value gives a global
measure of the goodness of fit to a powder diffraction pattern and can be used as
a test for space group discrimination. In particular, if a space group predicts an
absence where there is a strong Bragg peak, then the various goodness-of-fit
quantities will be substantially poorer than for space groups where the peak is
allowed. This profile refinement method does indeed reduce the space group
choice, but still leads to a large number of possible space groups. This is because
all space groups with extinction conditions that are a subset of the conditions
for the correct space group will fit with equal or better goodness-of-fit values. In
the example of dopamine hydrobromide, which is discussed below, all the
profile refinements with extinction symbols above P fit as well or better
than the refinement with the correct symbol P b c - (see Table 8.1). One needs to
bias towards more restrictive models that involve more stringent extinction
conditions. Markvardsen et al. (2001) have recently developed such an
approach, based upon Bayesian probability theory, that quantifies the penalty
costs for relaxing extinction conditions.

In the case of space group determination, Bayesian probability theory goes
beyond the question of 'How well are the data fitted given a particular extinc-
tion symbol?' to address the more appropriate question of 'Which is the most
probable extinction symbol given the data that have been collected?'. The first
question turns out to be half the answer. Additionally, one has to construct
prior probability distributions for reflections that are conditional on whether
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Table 8.1 Extinction symbol probabilities for dopamine hydrobromide. The prob-
abilities are expressed as a ratio of the log(probability) of the extinction symbol to the
log(probability) of P . The diffraction pattern used to determine the space group of
dopamine hydrobromide was collected on Station BM16 at the ESRF, from a 1mm
capillary using an incident wavelength of 0.6528 A

Symbol

Pb c-
Pb--
P -c-
P-2l2l

P-2,-
P--2l
P ...
Pbcb
P -cb
Pb-b
P -- b

Probability

97.98
50.34
43.96
21.17
15.21
5.96
0

-388.55
-423.68
-436.18
-471.32

hkl Okl

k
k

k

k

hOl hkO

I

I

I k
I k

k
k

hOO OkO

k
k

k
k

k
k
k
k

001

I

I
I

I

I

the reflection is present or absent. The probability of a space group absence is
simply a delta function (i.e. the assumption is made that the peak intensity is
precisely zero) whereas a presence follows a Wilson-type intensity distribution.
Combining these prior probabilities with the quality of fit to the data makes
simpler models with fewer reflections present more probable in a quantifi-
able way.

Table 8.1 illustrates this for the case of dopamine hydrobromide. Of the
top six possibilities shown, it is clear that P b c - is much more probable, given
the data, than the next choice P b - -, which is in turn much more probable than
P - c -, etc. As stated previously, it is not surprising that the second-to-sixth-
ranked choices are more probable than P , since all contain subsets of the
reflection conditions for the most probable choice P b c -. Similarly, those that
are less probable than P , all contain additional conditions that are not met
by the data. Indeed for face-centred extinction symbols, the probabilities range
from - 94800 (F ) to - 111200 (F d d d) which may all be considered to be
extremely remote.

A more difficult case of space group determination is provided by the example
of 1,4-dimethanol benzene (P. W. Stephens, personal communication). The
crystal structure is monoclinic with lattice constants a = 9.844 A, b= 15.484 A,
c = 4.845 A and (3= 101.20°. From visual inspection of the systematic absences,
it was not possible to distinguish between the space group extinction symbols
P 1 2i/a I, P I 2i/n 1 and P 1 2:/c 1. The Bayesian approach confirms this
difficulty in space group determination since all three options are significantly
more probable than P 1 - 1 (see Table 8.2).
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Table 8.2 Extinction symbol probabilities for 1,4-dimethanol
benzene. The probabilities are expressed as a ratio of the log(prob-
ability) of the extinction symbol to the log(probability) of P 1 - 1.
The diffraction pattern used to determine the space group of 1,4-
dimethanol benzene was collected on beamline X3B1 at the NSLS,
Brookhaven using an incident wavelength of 1.149896 A

Symbol

P I 2i/n 1
P I nl
P 1 2!/fl 1

P 1 2l/c 1
P 1 a 1
P 1 c 1
P 1 2il
P 1 - 1
7 1 - 1
Hal
Al nl
A I - I
Cl - 1
Cl c 1

Probability

25.36
19.53
18.04
17.82
12.02
11.98
6.02
0

-1760.87
-1768.75
-3398.06
-3407.11
-4682.25
-4707.09

hkl

h + k + l
h + k + l
k + l
k + l
h + k
h + k

hOl

h + l
h + l
h
I
h
I

h + l
h,l
h,l
I
h
h,l

0/cO

k

k
k

k

k
k
k
k
k
k

The order of probability in Table 8.2 does, however, make space group P 2\jn
more likely than either space groups P 2\ja or P 2\jc. This assignment is con-
firmed by structure solution since only space group P 2\jn yields an acceptable
structure. The discrimination between space groups involves not only the
identification of single absent or present reflections, but also the evaluation of
presences and absences within a group of reflections. While this is difficult by
eye, the Pawley extraction of peak intensities and their correlations leads to a
quantifiable assignment of peak absence/presence even in cases of substantial
overlap.

8.5 Overcoming Bragg peak overlap

Although it is clearly impossible simply from profile refinement methods to
determine the intensities of completely overlapping reflections, the use of basic
crystallographic constraints such as positivity and atomicity can provide some
discriminatory power. David (1987, 1990) showed that, by using all the avail-
able Bragg intensity data, information about the separation of overlapped
intensities could be obtained from the non-overlapped reflections. Two strat-
egies were proposed: one involved the use of a maximum-entropy Patterson
map algorithm and the other a modification of Sayre's (1952) squaring method.
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When high-resolution data are available, the maximum entropy method is
powerful (David 1990), particularly when the Patterson map is used directly.
The Sayre's squaring method has been substantially developed by the work of
Estermann, Baerlocher and McCusker (1992) and Estermann and Gramlich
(1993) to include an iterative redistribution of intensity statistics. This FTPS
(Fast Iterative Patterson Squaring) method has been successfully used to solve
several zeolite structures from powder data (see Section 12.5).

In order to understand how basic constraints such as positivity and atomicity
can help in the separation of completely overlapping reflections, consider the
Sayre's squaring method developed by David (1987). Electron density is con-
centrated on atomic sites and is everywhere positive in a crystal structure. The
Patterson map, which is simply the autocorrelation function of the crystal
structure, will have similar attributes. Fig. 8.8(a) shows a one-dimensional
section of a Patterson map.

When this Patterson map is squared (Fig. 8.8(b)) the squared result still bears
a strong resemblance to the original Patterson function. The Fourier transforms
of the Patterson map and its square are given by

Writing the Patterson map as a sum of Gaussian functions leads to

The approximation holds if the overlaps between the peaks in the Patterson
map are small and is a reasonable working assumption. This is because the
Patterson map, though containing N(N— 1) peaks, is still relatively sparse and is
dominated by vectors associated with heavy atoms that will generally be well-
separated from one another. Combining eqns (8.13 and 8.14) and (8.15 and
8.16) leads to the relationship

and
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Fig. 8.8. A one-dimensional section of (a) a synthesized Patterson function and (b) its
square.

For overlapping reflections, the coefficient is a constant as it is only a function
of ^-spacing and thus, the fractional integrated-intensity contribution of the
mth of M overlapping reflections is given by

New estimates for the overlapped integrated intensities may be obtained
using this equation with the initial presumption that overlapped intensities are
equipartitioned. These new estimates can then be recycled through eqn (8.18) to
provide improved values. This iterative process continues until convergence is
achieved. This approach does provide superior results over equipartitioning.
However, being based upon the approximate assumption that Patterson and
squared Patterson maps look similar in structure, the algorithm is not exact.
Examination of results (David 1987) suggests that the squaring method shifts
the relative intensities in the correct sense but, in the majority of cases, to a
degree often substantially less than the true amount.

Other techniques based upon semi-exhaustive intensity permutations of
overlapped reflections have met with success (Jansen et al. 1992ft; Cascarano
et al. 1991). Perhaps the most rigorous development to date, however, is the
theoretical work of Bricogne (1991) who showed that the effects of overlapped
reflections may be treated as an extension of the phase ambiguities of centric
(1 dimension) and acentric (2 dimensions) to a (2na + «c)-dimensional space,
where na and nc are the number of acentric and centric reflections contained
within a completely overlapped group of reflections. The need to phase permute
within a multi-dimensional hyperspace is computationally daunting and yet is
an oversimplification of the problem as due account must also be taken of the
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often high correlation between neighbouring reflections that almost overlap.
This theoretical approach is discussed extensively in Chapter 14.

8.6 Incorporating crystallographic information

In the previous section, it was shown that the simple restrictions of positivity
and atomicity could bring some discriminatory power to the separation of
completely overlapping reflections. Clearly, if a part of the structure is already
known then the estimated values of overlapping integrated intensities can be
better determined. Various groups have developed strategies to incorporate
such fragment information into the extraction of integrated intensities (Jansen
et al. 1992ft; Altomare et al. 1996, 1999) and these approaches are discussed
elsewhere in this book (see Sections 10.5 and 11.5). In this section, we continue
to use probability theory in a consistent Bayesian manner to show
that substantial improvements can be made in the separation of integrated
intensities if a part of the structure is already known.

Consider that the initially extracted integrated intensities have been used to
determine, for example, the location of a heavy atom or an aromatic ring
through Patterson methods. Phased structure factors can easily be calculated
for this component of the crystal structure and then used in conjunction with the
diffraction data to constrain further the structure-factor intensities. Take the
case of two centric reflections, k and k', depicted in Fig. 8.9(a) and (b).

The solid contours indicate the goodness of fit obtained with the diffraction
data for various possible combinations of the two structure factors, Fk and Fk>,
so that (a) corresponds to two isolated Bragg peaks (with \Fk

 2 = 9 ± 2 and
|_/v|2 = 7±2 with no correlation) and (b) depicts the situation for complete
overlap (\F^ 2+ -F&'|2 = 16 ±3). The toroidal probability distribution in
Fig. 8.9(b) reflects the fact that only the sum of the integrated intensities (i.e. the
quadratic sum of F^ and F^) is determined well by the measurements. The
dotted contours represent the prediction for the two structure factors based
solely on knowledge of the recognised fragment and the chemical composition
of the full-crystal structure. The best estimate is the peak of this distribution and
is given by the structure factors, Fk (known) and Fk> (known), calculated from
the positions of the known atoms, while the uncertainty, a=ak = ak,, is gov-
erned by scattering density from the unlocated components. Indeed,

where fn is the atomic scattering factor for one of the Allocated atoms in the
crystal structure. For this particular example, F^ (known) = 2 ± 2 and F^
(known) = 4 ± 2. Observed and model probability distributions are multiplied
together since they form two independent pieces of information. This final



Fig. 8.9. The joint probability distribution for two phased structure factors (a) for two
isolated Bragg peaks, and (b) for two completely overlapping Bragg peaks. The solid
contours correspond to the probability distribution associated with the Pawley refine-
ment of the observed data. The dotted contours are associated with the calculated
structure factor, which is centred on the structure factor value of the known fragment
and has a Gaussian blur related to the scattering from unlocated atoms. The grey-scale
represents the combined probability distribution.
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probability is indicated in the figures by the grey-scale shading. In the top
example, although the model constraints are relatively weak, positive phases for
both structure factors are highly preferred although there is still a small prob-
ability that Fit is negative. It is worth pointing out that this approach has not
only confirmed intensities but also indicated probable phase values as well.
Indeed, in general, located fragments contain powerful phase information that
should be used to maximum advantage in structure solution. This is discussed
further in the second half of this section. However, from a practical viewpoint, an
updated estimate of the structure-factor magnitudes is useful as modified input
to traditional Direct methods programs. In principle this process can proceed
iteratively with structure factor estimates improving as the known fragment size
increases until the complete structure is solved. An estimate of the structure-
factor magnitudes can be obtained from the joint probability distribution
shown in Fig. 8.9(a) and (b) by integrating it over regions where either \Fk or
\Fk'\ are constant. The result of such a marginalization is shown in Fig. 8.10(a)
and (b) and gives for case (a) Fk =2.97 ±0.34 and \Fk>\ =2.69 ±0.36 with no
correlation and for case (b) Fk\ =0.5 ±8.7 and \Fk>\ =4.0± 1.2 with a corre-
lation of —94 per cent.

It should be noted that the error-bars quoted for case (b) have to be treated
with caution, as the Gaussian approximation of the probability distribution
upon which they are based is clearly a poor one in this instance. In the analysis
above, both reflections have been presumed to be centric. As a further illus-
tration of how this formal probabilistic analysis automatically makes full use of
all the information that is presented to it, Fig. 8.10(c) shows how the estimate of
the magnitudes of the structure factors would have changed for the case of two
completely overlapping acentric peaks. The optimal estimates would then have
been Fk\ = 2.2 ±1.3 and F^ = 3.4 ± 0.9 with a correlation of —86 per cent. In
this situation of completely overlapping peaks, irrespective of whether the
reflections are centric or acentric, there is a strong indication that both reflec-
tions have a positive phase and thus direct structure solution from this stage is
possible if a sufficiently large structure fragment is known.

It is clear from the previous discussion in this section that knowledge of the
partial crystal structure can be used to improve the estimates of the intensities of
the reflections, \Fk

 2 and \Fk>
 2 particularly for strongly overlapped peaks.

However, it was also shown that located atoms give an indication not only
of the amplitude, but also of the phase of each structure factor. Ignoring the
latter is tantamount to throwing away useful, if not vital, information. Indeed,
Fig. 8.10(a) illustrates that for isolated and well-determined Bragg peaks, the
fragment information has little effect on the intensities of the structure factors
but does provide a strong preference for a particular phase assignment. In
practice, this approach can be used successfully for structure completion when
as little as one third of the scattering density in the crystal structure has been
located. This is illustrated by the particular example of chlorothiazide that was
solved by Direct methods (Shankland et al. 1997).



Fig. 8.10. See next page for caption.
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Fig. 8.10. The final probability distribution illustrated in Fig. 8.9 but represented in this
diagram as a function of \F\ (hence only the positive quadrant is shown). This \F\
distribution must be calculated if the known fragment information is to be utilized in
traditional direct methods, (a) The anticipated \F\ distribution for the reflections shown
in Fig. 8.9(a)—the reflections are clearly centric, (b) The anticipated \F\ distribution
for the reflections shown in Fig. 8.9(b) assuming the reflections are centric, (c) and as for
(b) but assuming the reflections are acentric.

The molecular structure of chlorothiazide, C7H6N3O4S2C1, is shown in
Fig. 8.11.

The crystal structure is triclinic (space group PI) with lattice constants
a = 6.372k,b = 8.916A, c = 4.855A, a = 96.13°, j3 = 99.48°, 7 = 74.41° (Z= 1).
The three heavy atoms (2S + Cl) constitute one third of the scattering density of
the structure and are easily located using Patterson methods. The integrated
intensities were extracted from the powder diffraction pattern using the Pawley
method with due account taken of Bragg peak overlap by retaining the weight
matrix, Hhk, given in eqn (8.12). The missing structure was then taken as an
additional unknown contribution to the heavy-atom structure that was assumed
to be known exactly. Mathematically, this corresponds to minimizing the
correlated integrated intensity differences between the observed structure-
factor magnitude squared, |_Fobs

 2 and the magnitude squared of the sum of
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Fig. 8.11. The molecular structure of chlorothiazide, C7H6N3O4S2C1.

known + difference |-Fkn0wn + A_F|2, while enforcing positivity in the difference
Fourier map. The quantity

is minimized (where A_F(h) = ^r Ap(r) exp(—27rih • r) is the Fourier transform
of the electron density, Ap(r)) while the entropic term ^r Ap(r)ln(Ap(r)) is
simultaneously maximized. In this way, the observed integrated-intensities
constraint is rigorously obeyed, the phase information from the heavy atoms is
used and no constraints are imposed on the phases of unknown difference
Fourier components. In the case of chlorothiazide, all non-hydrogen atoms
were unambiguously located in the maximum entropy Fourier map (see
Figs 8.12 and 8.13) implying that up to two-thirds of a crystal structure may be
reconstructed using this approach. Many of the correct features associated with
the unlocated atoms are visible in the standard Fourier map. However, the
standard Fourier map also contains false features of a similar magnitude to the
correct features making atom location a task that involves a substantial amount
of chemical intuition. In the maximum entropy Fourier map, the correct atomic
features are easily discriminated from the surrounding low background density.
In conclusion, it is clear from this example that the correct treatment of overlap
and correlations between integrated intensities combined with the active use of
fragment information can be a powerful tool for complete structure solution
from powder diffraction data.
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Fig. 8.12. Two-dimensional section of the scattering density for chlorothiazide (a)
calculated using the full crystal structure, (b) calculated using only the heavy atom (two
sulphur and one chlorine) sub-structure, (c) synthesized from a maximum entropy map
based upon fitting the correlated integrated intensities, with due account taken of the
structure factors associated with the heavy atoms and the structure factor blur
corresponding to the unlocated atoms, and (d) taken from a standard powder diffraction
Fourier map derived from the observed structure factors (assuming the heavy atom
model) obtained by applying Rietveld's original method. Note that two heavy atoms
(c./. (b)) are visible in this section.

Fig. 8.13. A second, different two-dimensional section of the scattering density for
chlorothiazide taken from the same maps as those shown in Fig. 8.12. Note that despite
the fact that no heavy atoms are to be found in this section, the Bayesian approach
(c) reveals all the other atoms, whereas the standard map (d) is ambiguous.

8.7 Conclusions

Well-developed computer programs based upon the Le Bail and Pawley meth-
ods are available for extracting integrated intensities from powder diffraction
data. The challenge that faces this stage in the structure solution process is
obtaining the best structure-factor magnitudes as input to structure-solving
programs. The incorporation of a known partial structure has substantial
benefits and there is significant potential for future algorithms to exploit this
information.
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Experimental methods for estimating the relative
intensities of overlapping reflections

Thomas Wessels, Christian Baerlocher, Lynne B. McCusker
and William I. F. David

9.1 Introduction

The better the estimate of the individual reflection intensities from a powder
diffraction pattern, the better are the chances of solving the structure. All of the
approaches to structure determination described in the remaining chapters
become more powerful as the quality of the diffraction data improves. Extra
effort to produce more single-crystal-like data can facilitate structure determi-
nation considerably, and can even make the difference between solving and not
solving the structure. A number of ingenious computational methods have been
developed to improve the estimation of the relative intensities of overlapping
reflections, and these have been described in the previous chapter and Chapters
10 and 11. However, it is also possible to modify the data collection procedure
to obtain better intensity information experimentally.

By collecting several datasets on the same sample under different but con-
trolled conditions, more information about the relative intensities of over-
lapping reflections can be deduced. The relationship between the datasets must
be known or determined, and then, using this information, a set of more single-
crystal-like reflection intensities can be extracted from the patterns. Two such
methods have been developed and applied successfully, and these are described
in more detail in the following sections. The first requires a material that
undergoes anisotropic thermal expansion, and the second a sample in which a
homogeneous texture (preferred orientation of the crystallites) has been
induced.

9.2 Anisotropic thermal expansion

If a material expands or contracts as a function of temperature without
undergoing a phase transition, the positions of the reflections in the diffraction
pattern change but their relative intensities remain more or less the same. If the

9
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expansion is anisotropic (say, for example, the a-axis expands, the ft-axis con-
tracts and the c-axis remains the same), the positions of the lines relative to one
another will change, and this means that the pattern of reflection overlap will
also change. Reflections that overlap at one temperature may not overlap to the
same extent at another and so by measuring the diffraction pattern of such
a material at two or more temperatures, more information about the relative
intensities of overlapping reflections can be extracted. For complex structural
problems, the additional information that can be obtained from these extra
datasets can be extremely valuable.

As this phenomenon of anisotropic thermal expansion is not uncommon, the
method can be applied to a number of different types of materials. During
the data collection, apparatus for heating or cooling the sample is required, but
the experiment is otherwise straightforward.

9.2.1 A simple two-peak analysis

The essential benefits of anisotropic thermal expansion may be analysed by
consideration of a simple two-peak example. A high quality diffraction pattern
has been collected and the intensities extracted by a Pawley linear-least-squares
analysis. Two peaks (with intensities 7: and 72) are essentially completely
overlapped. Both individual intensities are poorly determined and indeed one is
refined to be negative: /i = - 500 ± 1000 and 72= 1500 ± 1000. The negative
correlation (c = —0.999) is, however, extremely high reflecting the fact that the
sum of the two-peak intensities has been well determined: /totai = /i + /2 =
1000 ±20. Concern is often expressed when negative intensities occur. In a
Pawley analysis, however, this situation is always associated with substantial
peak overlap (and/or high correlation of the intensities with the background
parameters) and does not prejudice the intensity extraction process. It merely
indicates that individual intensities are poorly determined while sums of
intensities are still well-behaved quantities.

Now consider a second rapid experiment where the temperature has been
changed so that the peaks, through differential thermal expansion, are now no
longer overlapping. As a result of the speed of the experiment, the overall
statistics are poorer with 71 = 180±50 and 72 = 720±150. Importantly, how-
ever, there is now no statistical correlation between the intensities (c = 0). These
measurements may be merged together to give the best estimate of Ii = 189 ± 50
and 72 = 804±60 with c = -0.733. Note that the sum of the intensities
/total = 993 is much closer to the first experimental value since this has been
determined substantially better than in the second measurement where
/totai = /i+/2 = 900± 170. The second intensity 72 is, as expected from the
second experiment, substantially larger than /:. The intensity ratio of 4.25:1
does, however, differ from the value of 4:1 suggested by the second experiment.
This is not on account of any ratio discrimination in the first measurement but
because of (a) the fact that the estimated standard deviation (e.s.d.) of 72 is
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larger than that of 7: and (b) the requirement that the summed intensity should
be closer to 1000 than 900. Hence both experiments have brought valuable
information to the analysis. The first, despite the presence of negative inten-
sities, gives a better measure of the total intensity of the two peaks, whereas
the second experiment provides the discrimination between the individual
intensities.

Usually, when performing experiments at different temperatures, the same
counting time is used in each case. In the example discussed above, the first
experiment was taken to be longer than the second in order to highlight the fact
that negative intensities are not problematical and indeed, when combined with
the appropriate correlations, can bring important information about Bragg
peak intensities.

9.2.2 Mathematical aspects of the analysis of integrated intensities
collected at more than one temperature

In a standard powder diffraction measurement, the experimentally determined
Bragg peak intensities are linearly related to the square of the structure-factor
magnitudes of a Bragg reflection. Structure-factor magnitudes belonging to
isolated reflections can thus be straightforwardly estimated. As discussed in
Chapter 8, the most popular techniques are the iterative Le Bail method (Le Bail
et al. 1988) and the Pawley least-squares method (Pawley 1981). In dealing with
anisotropic thermal expansion and multiple datasets, the least-squares Pawley
procedure is used since it gives access to the integrated intensities covariance
matrix. In an ideal situation where a strong Bragg peak is isolated from other
Bragg peaks, least-squares analysis returns a best-fit value of the intensity (7),
and a measure, a, of the range of values which give reasonable agreement with
the data. This is equivalent mathematically to the assumption that the like-
lihood is roughly Gaussian with mean 70 and standard deviation a. This may be
written as:

In powder diffraction patterns, the considerable overlap that commonly occurs
between neighbouring Bragg peaks makes it impossible to consider individual
reflections in isolation. The likelihood function of eqn (9.1) must, therefore, be
generalized to a multivariate Gaussian:

where Ij is the intensity of the y'th reflection with the best-fit value (7)7-.
The matrix, C^1, is the inverse of the covariance matrix representing the
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correlations induced by the overlaps:

In considering anisotropic thermal expansion, several such sets of diffraction
data need to be collected for the same sample at different temperatures {Tk}. It
is assumed that there is little change in the fractional atomic coordinates. The
intensity, Ij{Tk}, of they'th reflection at temperature, Tk, can be related to the
intensity of the reflection at a reference temperature, I}\T= T0}, by introducing
a small change to an overall Debye-Waller factor. In this simplest approx-
imation, this gives:

where d*(Tk) is the modulus of the reciprocal lattice vector at temperature Tk,
and B(Tk) is the initially unknown overall atomic displacement parameter,
whose temperature dependence may be well modelled in terms of a single
Einstein oscillator. Over a limited temperature range at temperatures well away
from very low temperatures, B(Tk) will vary linearly with temperature.

If there are substantial changes in fractional coordinates as a result of, for
example, the rotation of a structural fragment, then the above assumptions may
be modified to allow for a smooth variation in structure factor as a function of
temperature. In practice, this is generally a small effect and can be neglected. In
principle, such variations may be accommodated in a more general mathematical
formalism. If even more severe changes occur as a result of effects such as
a structural phase transition, then clearly even these approximations will fail.
The simple solution to such a situation is to select a different temperature region.

The joint likelihood function for the intensities {/}, conditional on the value
of the overall atomic displacement parameter, is given by the product of the
likelihood functions for the individual datasets:

This equation is a multivariate generalization of the two-peak example in
Section 9.2.1. Once overall atomic displacement parameter effects have been
removed, the resulting integrated intensities may be extracted with significantly
reduced correlations.

9.2.3 An example of differential thermal expansion—chlorothiazide

Diffraction data were collected for the diuretic compound, chlorothiazide,
contained in a 1 mm capillary on beamline 9.1 at Daresbury SRS. The data were
collected at 90 K, 130 K and 160 K at a wavelength 1.09852 A. Sections of all
three datasets, corresponding to an angular range of 25.5° to 34.5° 20, are
shown in Fig. 9.1.



Fig. 9.1. Diffraction patterns of chlorothiazide collected at 90 K (top), 130 K (middle)
and 160K (bottom). The 9° range highlights the similarities between the diffraction
patterns at the different temperatures.



Fig. 9.2. Diffraction patterns of chlorothiazide collected at 90 K (top), 130K (middle)
and 160K (bottom). The 0.8° range highlights the effects of anisotropic thermal
expansion. The dashed lines indicate the different angular changes for the reflections as a
function of temperature.
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It is clear from a superficial assessment of Fig. 9.1 that little has changed in
the diffraction pattern as a function of temperature. The distributions of peak
intensities are essentially the same; the three most intense peaks are at
approximately 27°, 31° and 34° in all datasets. However, a more detailed
examination (Fig. 9.2) indicates that the extent of peak overlap does indeed vary
as a function of temperature.

The dashed lines not only indicate that the crystal structure expands as
a function of temperature but that the expansion is substantially different for
different reflections. In particular, the 34.4° overlapping doublet at 90 K is split
by 0.1° at 160K, where it becomes clear that the higher angle reflection is
substantially the weaker. A Pawley analysis of the individual datasets indicated
that the 420 reflections in the chlorothiazide dataset were grouped into 360
groups comprising 60 completely overlapping doublets (i.e. 120 reflections). On
merging all three datasets, the number of groups increased to 410 with only 10
completely overlapping doublets (20 reflections). The resulting set of reflection
intensities is effectively non-overlapped and pseudo-single-crystal in nature.
Unsurprisingly, since the data were collected to atomic resolution (fi?m;n = 1 A),
subsequent structure solution by Direct methods was straightforward
(Shankland et al. 1997). More recently, Brunelli et al. (2003) have exploited
anisotropic thermal expansion to solve larger molecular crystal structures.

9.3 Texture

Powder diffractionists usually take great care to ensure that a sample is free of
preferred orientation effects, so they can be sure that the relative intensities of
the peaks in the diffraction pattern are not distorted. However, in principle,
a textured sample (one with preferred orientation) can be used to obtain
additional information about the relative intensities of overlapping reflections.

9.3.1 Concept

The diffraction patterns of a single crystal, an 'ideal' powder sample (i.e. one
with no preferred orientation) and a textured powder sample are shown in
Fig. 9.3. For simplicity, a two-dimensional case is illustrated, but extrapolation
to three dimensions is straightforward.

For the single crystal (Fig. 9.3(a)), all reflections are well-separated in space,
and their individual intensities can be measured easily. For the 'ideal' powder
(Fig. 9.3(b)), millions of crystallites with all possible orientations are present, so
the diffraction pattern is simply a superposition of millions of differently
oriented single-crystal diffraction patterns. As a result, reflections with similar
J-spacings overlap in space and only the sum of their intensities can be mea-
sured. For example, the three reflections highlighted in the single-crystal pattern
fall on top of one another in the 'ideal' powder diffraction pattern, so their
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Fig. 9.3. Diffraction pattern (above) and schematic drawing of the sample (below) for a
two-dimensional (a) single crystal, (b) powder with randomly oriented crystallites, and
(c) textured powder. A gray scale has been used to represent the reflection intensities. The
arrows highlight three reflections with similar diffraction angles (20) that are separate in
the single-crystal pattern, but overlap in the normal powder pattern. In the textured
powder pattern, these reflections can be separated if the pattern is measured
appropriately. The diffraction angle (2(9) increases radially from the center of each
diffraction pattern.

individual intensities cannot be determined. The textured powder sample
(Fig. 9.3(c)) lies somewhere between these two extremes. As not all crystallite
orientations are equally represented, the reflections are concentrated in certain
directions, so by measuring the diffraction pattern along different directions
(e.g. by orienting the sample appropriately), additional intensity information
can be extracted.

The texture of the sample must be determined to establish which set of sample
orientations will yield the most useful information, and to quantify the rela-
tionship between the diffraction patterns collected for these orientations. Then,
by combining the texture information with the measured diffraction patterns,
an improved set of individual reflection intensities can be generated.

9.3.2 Sample preparation

There are many ways of preparing textured samples, and all are sample-
dependent. Advantage can be taken of electrical or magnetic properties by
applying an appropriate field to align the crystallites, but it is usually the
morphology of the crystallites that is exploited. If the crystallites are platelets,
sedimentation techniques can be applied, and if they are needles, a smear
approach, with or without a matrix, can be used.
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Before any technique is applied, it is important that any non-oriented
aggregation of the crystallites in the sample be minimized. This can be done by
grinding the sample to reduce the size of the particles to a maximum of c.50 urn,
suspending these particles in a liquid medium, and then subjecting the sus-
pension to a high-energy ultrasonic treatment. For an aluminophosphate
sample, adding a dispersant (0.01 per cent solution of Na3(PO4)2) to the sus-
pension was found to help reduce flocculation.

Excellent results have been obtained by mixing disaggregated powder sam-
ples of needle-like crystallites with polystyrene dissolved in tetrahydrofuran
(THF), and then applying a smear technique. The layer dries rapidly as the THF
evaporates, and then additional layers can be added until the sample is thick
enough. The matrix does contribute to the background of the powder diffrac-
tion patterns, but it is amorphous so no additional diffraction peaks are
observed. Its use allows robust, relatively uniform, highly-textured specimens to
be prepared. A polyvinyl alcohol / water mixture has also been used successfully
as a matrix. In this case, more of the matrix material is used and the needles are
aligned by rolling and stretching the rubbery mixture before it dries. More
detailed descriptions of sample preparation techniques can be found in Wessels
(1999).

9.3.3 Texture description

The preferred orientation of crystallites in a powder sample is often described in
terms of a single vector. For example, platelets tend to be preferentially oriented
with the plate axis (short dimension of the crystallite) aligned along the sample
normal, whereas needles tend to be aligned with the needle axis perpendicular to
the sample normal. While such descriptions can be useful if only an approxi-
mate characterization of the texture is needed, they are limited in quantitative
applications because most real samples have much more complex textures.
Nonetheless, simple functions have been used by Lasocha and Schenk (1997)
and by Cerny (1998, 2000) to obtain better intensity information from textured
samples.

To take full advantage of the additional information offered by a textured
sample though, a full texture analysis of the sample is required. This approach
was first proposed and demonstrated by Hedel et al. (1997) for simulated data.
This full texture analysis requires that pole-figure data for several single (non-
overlapping) reflections are measured. That is, the intensity of the reflection is
measured at all sample orientations in 5° rotation (<f>) and tilt (x) steps (see
Fig. 9.4(a)). An idealized crystallite orientation distribution is shown in
Fig. 9.4(b) for a crystallite morphology with the dimensions ^[looi^Aoio]
<CZ>[ooi] and some pole figures simulated for that distribution in Fig. 9.4(c).
Most of the crystallites will lie with the (100) planes approximately parallel to
the specimen surface, but a significant number will lie with the (010) planes
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Fig. 9.4. (a) Schematic drawing of the 1296 points in x and 0 space that are measured to
produce a pole figure for a single reflection. The x (tilt) axis goes from 0° at the center to
90° at the perimeter, and the 0 (rotation) axis runs counterclockwise around the
perimeter, (b) An idealized crystallite distribution showing the volume percentages on the
left and a schematic view of the sample from the top on the right, (c) Simulated pole
figures for the 100, 010 and 001 reflections for the crystallite distribution given in (b). The
intensity is proportional to the degree of grayness.

parallel to the surface, and some will adopt other orientations. A preferred
orientation in the plane of the sample that might be induced by a smear
technique (the long dimension is preferentially oriented at approximately 45°)
has also been assumed.

A set of measured pole figures such as those simulated above can be used to
determine the orientation distribution of the crystallites within the sample. This
information can then be used to calculate the so-called 'pole-figure value'
Phki(x^) f°r every reflection in the diffraction pattern for any sample orien-
tation. Phki(x^) has a value of one for all sample orientations (x,<t>) if the
crystallites are oriented randomly. For crystallites oriented preferentially, its
value is proportional to the volume fraction of crystallites contributing to the
intensity of the reflection hkl for the sample orientation (x,<t>)-

9.3.4 Instrumentation

For the measurement of the pole figures and for subsequent orientation of the
sample at specific x and <f> angles, a controlled way of tilting and rotating the
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Fig. 9.5. Schematic diagram of the experimental setup showing the sample tilt (x) and
rotation (0) axes and the predetector analyser crystal.

sample is necessary. Consequently, two additional circles (x and <f>) are attached
to the powder diffractometer, to produce an experimental setup very similar to
that of a standard four-circle single-crystal diffractometer. A schematic drawing
of the instrument for reflection geometry is shown in Fig. 9.5.

On a conventional Bragg-Brentano laboratory diffractometer with a
divergent X-ray beam, tilting a flat-plate specimen leads to a violation of the
parafocusing condition, because parts of the sample are moved off the
focusing circle. This defocusing results in severe line broadening and a cor-
responding increase in reflection overlap. However, by combining a highly
collimated parallel beam (at a synchrotron source, for example) with a crystal
analyser, which acts as a very fine receiving slit, Hastings et al. (1984) have
shown that all sample displacement aberrations can be eliminated. All X-rays
that are diffracted from the sample and fulfil the Bragg condition at the
analyser are recorded simultaneously by the detector, independent of their
point of origin in the sample. This phenomenon is essential to the success of
the texture approach to structure determination described here. It means that
complete 20 scans can be measured for any sample orientation without any
additional line broadening.

It is also possible to measure the data in transmission mode with a very small
sample and an area detector (Prokic 2004; Baerlocher et al. 2004). This setup has
the advantage that complete rings are measured simultaneously, so data collec-
tion times are an order of magnitude faster. Furthermore, complete pole figure
data are collected for all reflections automatically. The main drawbacks of this
geometry are that (a) the 20 range is limited by the size of the image plate, and (b)
the resolution of the diffraction patterns in FWHM is somewhat poorer. How-
ever, experiments indicate that the advantages of the setup probably outweigh the
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disadvantages. Nonetheless, the remaining sections will concentrate on the
reflection setup, because that geometry was used to develop the method.

9.3.5 Data collection

Data collection for the texture approach entails (a) the measurement of an
untextured sample of a standard material to calibrate the instrumental setup,
(b) the measurement of pole-figure data for several single reflections of the
textured sample, and (c) the measurement of complete diffraction patterns for
several selected sample orientations.

The calibration curve is used to correct for the decline in measured intensity
caused by (a) the shape of the footprint of the incident beam on the sample as
a function of tilt (x) and 20 angles (low 20 and/or high x cause the beam to
'overshoot' the sample), (b) the fact that as the tilt angle increases, so does the
vertical dimension of the diffracted beam (this means that at some point the full
diffracted beam no longer passes through the vertical slit in front of the analyser
crystal), and (c) the sample transparency (if the sample is not 'infinitely thick').
To do the calibration, the diffracted intensity from an untextured sample of a
material with an absorption coefficient, packing density and thickness similar to
those of the sample of interest is measured for all tilt angles (5° steps) at a series
of 20 values (c.5° apart). As the factors affecting this curve are closely related to
the specific setup used and its current state of alignment, it is recommended that
the calibration curve be measured before each data collection series.

The number of pole figures required to describe the texture depends upon the
sample symmetry and the crystal symmetry. The lower these symmetries, the
more pole figures needed. The final selection of reflections is usually dictated in
part by the pattern itself, because only a limited number are free of overlap with
neighbouring reflections.

Once the pole figures have been measured and an approximate texture
established, the set of sample orientations that will yield the largest intensity
contrasts can be deduced. Full diffraction patterns are then collected with the
sample set at each of these orientations.

9.3.6 Data analysis

The deconvolution approach described here is based on the assumption that
textured powder samples have a three-dimensional intensity distribution in
reciprocal space. The diffracted intensity of a textured powder sample at step 20,
can be expressed as a function of the sample orientation (x,(j>) in the form:
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where the summation is over all reflections contributing to the intensity at that
step, IMI is the true integrated intensity of reflection hkl (single-crystal value),
Phki(x>4') is it§ pole-figure value for the sample orientation (x,^>), and
H(20 — 20/,ki) is the peak profile function. Before any data analysis can be
performed, all intensities must first be corrected with the intensity calibration
curve described in the previous section.

To solve eqn (9.6) for the Ihu, a two-step procedure is applied. First, the
texture in the sample is determined from the pole-figure data. From the texture,
all the required Phki(x^) values can be calculated, so the Ihu are the only
unknown quantities remaining in eqn (9.6). In the second step, the full dif-
fraction patterns measured for different sample orientations (x,<t>) are used to
unravel the overlapping reflections. These two steps of texture determination
and extraction of integrated intensities are discussed in more detail below.

The pole figures Phki(x^) °f the different reflections hkl are not indepen-
dent of one another. All are related by the texture of the sample, which is
defined as the Orientation Distribution Function (ODF) of its crystallites.
To describe the texture, a local orthogonal coordinate system is assigned to
each crystallite in the sample (strictly speaking to each volume element) and
its orientation is specified with respect to a sample-fixed orthogonal coordi-
nate system. This can be done by transforming one frame into the other by
a sequence of three rotations. These three angles can be displayed in a
Cartesian coordinate system, which defines the orientation space. Each crystal
orientation is represented by a point in this space and the complete set of
orientations is then called the texture. Pole-figure values Phki(x^) can be
calculated by integrating the ODF along a certain path and can therefore be
considered to be a two-dimensional projection of the ODF along this path.
However, the inverse problem of calculating the ODF given a few pole fig-
ures, is the main problem in quantitative texture analysis. This problem is
similar to that of reconstructing a three-dimensional object from two-
dimensional projections.

There are two common approaches to the determination of the ODF from
a few pole figures. Bunge (1965) and Roe (1965) introduced the harmonic
method in which the texture and the pole figures are expressed as a series of
spherical harmonics in Fourier space, while in the discrete or direct methods
(e.g. the WIMV method developed by Matthies and Vinel (1992)), calculations
are performed directly in orientation space. Computer programs for both
approaches are available, and either can be used to determine the texture from
pole-figure data and to obtain the pole-figure values required to solve eqn (9.6).

Either the Pawley method (Pawley 1981) or the Le Bail method (Le Bail et al.
1988) (see Chapter 8) are suitable for a multi-pattern deconvolution procedure.
Equation (9.6) can be used directly if the Pawley approach is applied. As dif-
fraction data from a textured powder sample provide more information than do
those from an 'ideal' powder, the correlation of intensity values of reflections
overlapping in 20 is generally reduced. However, if reflections cannot be



TEXTURE 175

resolved in either 20 or orientation space, their intensities will still be highly
correlated and the individual intensities can vary wildly between positive and
negative values. To overcome this problem, which is inherent to the Pawley
method, a Bayesian approach (Chapter 8; Sivia and David 1994), which
includes the requirement that intensities be positive, can be applied to the
extracted intensity values.

While the application of the Pawley method in a multi-pattern deconvolution
procedure allows eqn (9.7) to be solved for the unknown Ihu values in a
straightforward manner, the Le Bail method does not. However, satisfactory
results have been obtained with an iterative procedure in which the Ihu for each
of the measured powder patterns are first extracted separately using the stan-
dard Le Bail approach. For each reflection hkl, a set of intensities if1, which
correspond to the integrated intensities measured for different orientations of
the sample, is obtained. To obtain a unique set of 7 ;̂ values, these intensities are
merged using:

9.3.7 Example

This texture approach has been applied successfully in reflection mode to three
real polycrystalline materials with complex crystal structures (Wessels et al.
1999a). In all cases, it was possible to extract a set of intensities that was suf-
ficiently single-crystal-like for the crystal structure to be solved ab initio by
applying standard crystallographic methods. None of these structures could be
solved from intensities extracted from a conventional diffraction pattern col-
lected on an untextured powder sample. Two further structures have since been
solved from data collected in transmission mode (Baerlocher et al. 2004; Jorda
et al. 2005).

The solution of the previously unknown crystal structure of UTD-1F is
presented here to illustrate the method (Wessels et al. 1999ft). UTD-1 was the
first extra-large pore silica-based zeolite ever synthesized (Balkus et al. 1995;
Freyhardt et al. 1996), but initial structural investigations showed it to be
orthorhombic and disordered (Lobo et al. 1997). By modifying the synthesis
procedure, a sample of better quality (called UTD-1F) was prepared, and its
diffraction pattern could be indexed on a monoclinic unit cell (P2i/c,
a =14.9633, b = 8.4704, c = 30.0098 A, /3= 102.667°, V = 3711A3). The very

where the summation is over all different sample orientations z. These values are
then used as the new starting intensities for the next Le Bail extraction proce-
dure and the intensities fl obtained are merged again using eqn (9.7). The
procedure is then repeated until convergence is reached.
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Fig. 9.6. Pole figure for the 102 reflection of the high-silica zeolite UTD-1. Intensity is
proportional to the degree of grayness. The sample tilt and rotation angle settings selected
for the collection of full diffraction patterns are indicated with letters (see Fig. 9.7).

Fig. 9.7. Small sections of the five diffraction patterns collected on UTD-1 at different
sample orientations (see Fig. 9.6). (a) x = 0°, 0 = 0°; (b) x = 20°, 0 = 345°; (c) x = 35°,
0 = 335°; (d) x = 50°, 0 = 335°; (e) x = 70°, 0 = 325°. The variations in intensity as a
function of sample orientation are readily apparent.

fine needle-like crystallites of this material were aligned within a polystyrene
matrix by applying a smear technique.

Pole-figure data for seven reflections and full diffraction patterns at five different
sample orientations were measured. Figure 9.6 shows the 102 pole figure while
Fig. 9.7 shows small sections of the five diffraction patterns collected at the sample
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orientations indicated on the pole figure. The differences in the relative intensities
at the five sample settings are readily apparent and give a visual impression of the
increased information content in the set of measured powder patterns.

The texture was determined using the WIMV method (computer program
BEARTEX, Wenk et al. 1998), and then the iterative procedure outlined in
the previous section was used to obtain a set of single-crystal-like reflection
intensities. The application of a standard Direct methods program to these
intensities revealed a complete three-dimensional, four-connected framework with
14-ring pores. All 16 Si atoms in the asymmetric unit and even 17 of the bridging
oxygens were found on the top E-map. Subsequent difference Fourier maps cal-
culated using the extracted intensity values allowed the remaining 15 oxygens and
the (non-framework) Co atom and cyclopentadienyl rings to be located. Further
structural analysis was performed using a powder diffraction pattern collected on
an untextured sample. Rietveld refinement then showed the true symmetry to be PC
rather than P2i/c and the final model to have a full ordering of the Co complex in
the channels and a total of 117 atoms in the asymmetric unit.

9.4 Conclusions

By collecting several different, but related, diffraction patterns on a single material,
more information about the relative intensities of overlapping reflections can be
obtained. Two cases have been described. If a sample undergoes anisotropic
thermal expansion, the relative positions of the reflections in the diffraction pattern
will change as a function of temperature, but as long as the structure does not
undergo a phase transition, their intensities will remain very similar. Thus, the
relationship between the patterns is the fact that the reflection intensities are the
same and the reflection positions are a function of the small changes in the unit cell
dimensions. If a sample exhibits a preferential orientation of the crystallites, dif-
fraction patterns measured with the sample at different orientations will differ in
reflection intensity, but not in reflection position. In this case, the relationship
between the patterns is the orientation distribution of the crystallites. These multi-
pattern data collections require an appropriate sample and somewhat more
experimental effort. However, for difficult cases, such experimental approaches to
the solution of the overlap problem may be the only viable ones.
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Direct methods in powder diffraction—basic concepts

Rene Peschar, Anke Etz, Jouk Jonsen and Hendrick Schenk

10.1 Introduction

Direct methods (DM) are ab initio structure determination techniques that
handle the crystallographic phase problem via phase processing in reciprocal
space, starting from only the observed intensities. The main initial develop-
ments in DM started in 1948; the following twenty years witnessed rapid
progress in the field. With the advent of sufficiently powerful computers and
semi-automated computer programs in the 1970s, DM became the method of
choice for structure solution. Nowadays, these software packages are capable of
automatically solving molecular crystal structures with more than 100 inde-
pendent atoms in the asymmetric unit from single-crystal diffraction data.

It has been shown recently that DM can also be applied to powder diffraction
data, which lack the single-crystal-like quality, and in the following sections
some aspects of DM in this process will be discussed. First, some basic DM
concepts will be introduced (Section 10.2), and then the focus will be on DM in
practice (Section 10.3). More detailed information on these topics can be found
in textbooks on DM (e.g. Giacovazzo 1980; Schenk 1991). DM rely heavily on
the availability of a sufficient number of single-crystal(-like) intensities, so the
decomposition of the powder pattern into the individual intensities is very
important (see also Chapters 8, 9 and 11). Consequently, two whole-pattern
fitting techniques, the Pawley and the LSQPROF method, will be discussed
(Section 10.4), and the estimation of the relative intensities of completely
overlapping reflections via DM-based techniques as implemented in the pro-
gram DOREES will be presented (Section 10.5). The routines LSQPROF and
DOREES together with the DM program SIMPEL88 are the heart of the
structure determination package POWSIM. In the final section, an outline of
this package is given and some practical examples are discussed.

10.2 Basics of Direct methods

From a product of structure factors relative to two different origins, it is easily
shown that the corresponding sum of phases is independent of the choice of
origin whenever the reciprocal vectors add up to zero. This class of phase sum



A second class of phase sum relations, the semi-invariants, arises if the choice of
origin is limited to the allowed origins, as implied by space-group symmetry (see
Giacovazzo 1980 for complete tables of semi-invariant conditions). Since the
numerical values of the (semi-)invariants are determined solely by the crystal
structure and do not depend on the (allowed) origins, they can be used to
determine the crystal structure. Experimental phase sums are not obtained easily,
so phase sums are estimated theoretically. A successful technique to achieve this
is to assign random variables Rt and <f>, (z = 1 , . . . ,«) to the structure factor
moduli \Ft and phases <pt respectively, and to set up a joint probability
distribution P($i,Ri,..., <&„, Rn) of the random variables (e.g. Karle and
Hauptman 1958). In addition to the random variables Rt and <&,-, a choice of
primitive random variables and their prior distribution is also required to cal-
culate the Fourier transform of the joint probability distribution. If primitive
random variables are associated with atomic coordinates, while the indices
of the reflections are fixed, P($i,Ri,. . . ,<&„,R n )d$ i •• -dRn becomes the
probability that a particular combination of phase values and magnitudes
occurs, given the chosen prior distribution of the atoms. If only the contents of
the unit cell are assumed to be known and no preference concerning the atomic
positions can be stated, a model of TV atoms that are uniformly and indepen-
dently distributed in the unit cell and that have the same (overall) isotropic
displacement parameter B can be adopted. Under these conditions, the Cochran
distribution (Cochran 1955) can be derived. A conditional probability dis-
tribution of \I/3, the random variable assigned to a sum of phases like eqn (10.1),
given the three structure factor moduli:

and the four-phase invariants or quartets:
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relations are called the structure invariants. In DM, the most important invari-
ants are the three-phase structure invariants, also known as the triplets:

According to eqn (10.3), ^3 K 0 (modulo 2-Tr), but this indication becomes less
likely to be correct as G^ becomes small. For identical scatterers, 0-123 reduces to
7V~ ^2 and this quantity dominates Gj, if TV becomes large. In this mathematical
model, no feasible structure is excluded, so eqn (10.3) is expected to be generally
applicable given the contents of the unit cell. On the other hand, chemically
unfeasible and unwanted structures are not excluded and this may turn out to be

where

2, 3 and
for
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a weakness. More specific structural knowledge can be used as well (Main 1976;
Heinerman 1977), in particular in the calculation of Eh\'s.

The Cochran expression is readily generalized to an expression of a phase <f>h

that takes part in p triplets, and from the resulting expression, the tangent
formula (Karle and Hauptman 1956; Karle and Karle 1966) can be derived.
The tangent formula is used in practice to calculate a numerical phase value if
a number of <f>k + <f>h _ k and their statistical weights W^ and Wh _ k are available:

10.3 Direct methods in practice

The cosines of all triplets can be estimated from eqn (10.3), so the DM
numerical problem can be formulated as extracting numerical values of p
unknown phases given q cosine estimates of triplets. Even if q^>p, this problem
is not trivial, because only cosines of invariants, not the invariants themselves,
can be estimated, and because the estimates are far from exact. Most DM
programs proceed as follows (to be discussed in more detail below): First,
observed \Fh\ are normalized and the (semi-)invariants among the larger Eh 's
are identified and cosine estimates assigned. Then, one or more starting-sets of
phases are taken. For each set, a limited phase extension, in which the phases of
reflections with large Eh 's are expressed successively in terms of the starting-set
phases, is carried out. On the basis of (semi-)invariant consistency criteria, the
phase sets developed this way are ranked and the most likely numerical solution
is selected for a complete phase extension. With the latter set, an £-based
Fourier map (E-ma.p) is calculated and interpreted in terms of the atomic
coordinates.

10.3.1 Normalization and setting up phase relations

A theoretical expectation value (|-Fh|
2) can be calculated using the above men-

tioned model of TV uniformly and independently distributed atoms with an overall
isotropic displacement B. Setting |_Fh

 2
obs = K • (|-Fhf) and rearranging gives:

with Kan overall scale factor and e(h) a statistical weight due to the space-group
symmetry. On the basis of eqn (10.5), a least-squares analysis can be set up for
small ranges of sin2(6>)/A2, and from the resulting Wilson plot (Wilson 1942)



The -Bhl > 1 are the most powerful ones for structure determination, because the
Cochran-G3 in eqn (10.3) (triplet product) in which they participate will be
relatively large. Moreover, a large Eh deviates from the statistical average
\E-h\2 = 1 so it carries specific structural information that is required to visualize
the structure. Therefore, (semi-)invariants are set up only among the reflections
with Eb > 1 (the so-called 'strong' reflections). 'Weak' reflections with
|£h|<s^l-0 are not used actively in the phasing process but are still useful because
they occur as cross-terms (see Section 10.5) of (semi-)invariants and as such they
are essential for their correct estimation.

Because (\Eh
2) = l, classes of reflections with (l^l2^! (or >1) (e.g. as a

result of ;«eMfi?o-translations) may cause problems in DM (e.g. in finding sui-
table origin-fixing reflections). Therefore, the |.Eh|-statistics should be checked
carefully for anomalies and, if necessary, a renormalization should be carried
out. Eh | -statistics of centrosymmetric and non-centrosymmetric structures are
different. The former has more large and more small \Eb 's, but experimental
statistics can be misleading because of pseudo centres of symmetry (e.g. heavy
atom substructure in centrosymmetric configuration) or simply the lack of data,
as often occurs with powder data.

10.3.2 Selection of starting-set phases

The selection of a small set of starting-set phases is often carried out with the
convergence procedure of Germain et al. (1970). In this algorithm, reflections are
removed one by one from a list on the basis of the smallest sum of G^ values.
Occasionally, the removal of one reflection implies the removal of another
reflection (sometimes even two) that is linked via a single triplet. These reflections
are potential starting-set reflections that have to be included in the starting set in
order to avoid weak links in the phasing process. Some of the starting-set
reflections may be phased freely to fix the origin, and sometimes even the
enantiomorph in some acentric space groups, but the remaining starting-set
phases may have any numerical phase value that is allowed by the space-group
symmetry. In practice, the number of starting-set phases may vary from one
to ten.

10.3.3 Active phase extension

In the active phasing process, the phases of the 'strong' reflections are expressed
successively in terms of the starting-set phases using triplet relations only. Two
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estimates of K and B are derived. Subsequently, normalized structure factors
\Eh\ can be constructed:



WHOLE-PATTERN FITTING 183

alternatives have been developed to deal with the phase values in the starting set
that are not known in the beginning. In the numerical multi-solution technique,
a multitude of numerical sets with different numerical values for the starting-set
phases are generated and extended in parallel, usually by means of a weighted
tangent expression. This technique has been implemented in many DM pro-
gram systems, for example, MULTAN (Main 1985), SHELX (Sheldrick 1985),
GENT AN (Hall 1985) and SIR88 (Burla et al. 1989). For a general review of
DM systems available see Gilmore (1991). Various algorithms exist to select the
numerical phase values, for example, systematically from the interval [0,2-Tr] in
steps of 7T/4 or 7r/2 or using the magic-integer representation (White and
Woolfson 1975).

In symbolic phase determination, symbolic phase values, A, B, C, etc., are
assigned to the phases of the starting-set reflections. Each symbol represents all
numerical phase values allowed by the phase restriction of the reflection (Karle
and Karle 1966). In principle, only one phase set (expressed in symbols) needs to
be extended. Phases are accepted only if a unique symbolic phase indication is
obtained. A multisolution-type symbolic phase determination has been imple-
mented in SIMPEL88 (Peschar 1990), which is part of the POWSIM system to
solve structures from powder data (see Section 10.6). In this approach, both the
number of starting-set phases and the choice of starting-set reflections to which
a symbolic phase is assigned are kept flexible during the phasing process.

10.3.4 Selection of most likely numerical starting set (criteria)

Throughout the numerical and at the end of the symbolic phase extension,
consistency criteria are calculated in order to reject phase sets that are unlikely
to be correct. Some criteria are based on the expected internal consistency of the
triplet phase sums. The (semi-)invariants that have not been used actively nor
implicitly in the phase-extension process play an (even more) important role,
because they provide an independent statistical means to select the most likely
numerical phase set. Examples include criteria based on negative quartets, one-
phase and two-phase semi-invariants. Finally, on the basis of a combined figure
of merit, a numerical solution is selected, and after a complete numerical phase
extension, an E-map can be generated and interpreted.

10.4 Whole-pattern fitting

The first step towards a successful structure determination from powder data,
the indexing of the pattern (see Chapter 7), is now well-established and will
be considered to be solved from now on. A second prerequisite for using DM
on powder data is that a sufficient number of reliable single-crystal-like
intensities can be extracted from the powder pattern. As integrated intensities



in an iterative fashion. The variables j(obs, 6) and j(calc, 6) are the observed
and calculated intensities at the angle 6 respectively. j(calc, ff) depends on the
intensity of the reflection(s) at position 6' and on its peak-shape function P. The
background Bg(ff) can be modelled with a polynomial in 0 of order q.

In a standard Pawley refinement, all parameters (intensities, background
parameters, peak-shape parameters and cell parameters), are refined simulta-
neously. No structural parameters are required. As noted by Pawley himself,
the refinement process, involving the Simplex (Nelder and Mead 1964) and
Marquardt (1963) algorithms, can be unstable because of correlation between
overlapping peaks. Pawley suggested the introduction of Waser constraints to
improve the stability of the refinement, but this does not necessarily lead to
more reliable intensities.

10.4.2 The two-step LSQPROF whole-pattern fitting procedure

By taking the derivative of eqn (10.7) with respect to the intensities and back-
ground parameters, Jansen et al. (1992a) showed that the minimization problem
can be solved exactly for these parameters by means of a Simplex algorithm.
This led to a revision of the Pawley refinement into a two-step process. The
parameters are split in two sets with set one consisting of the intensities and the
background parameters and set two of the cell, peak-shape and zero-point
parameters. The latter are refined one-by-one while taking the parameters
from set one as a starting point. The refinement of the second set is done with
a Marquardt-type algorithm. In the computer program LSQPROF, these two
steps are carried out iteratively, both in a block-diagonal way, until a final
convergence has been obtained. Accurate standard deviations cannot be
expected in this way but this is not critical since the extracted intensities are
intermediates on the way to the structural atomic parameters. On the basis of
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are required, whole-pattern fitting techniques are an appropriate choice (see
Chapter 8).

10.4.1 The Pawley whole-pattern refinement

Rietveld refinement, originally developed to refine a complete neutron-
diffraction pattern as a function of a variety of parameters (Rietveld 1969), has
spawned fruitful research in whole-pattern refinement techniques (see Post and
Bish 1989). For our purposes, a procedure devised by Pawley (1981) to deter-
mine reliable cell parameters turned out to be a suitable starting point. The
Pawley whole-pattern refinement minimizes R:
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a comparison of peak-shape functions carried out by Young and Wiles (1982),
thepseudo-Voigi function with eight refinable parameters (the Lorentzian (UL, VL

and WL) and Gaussian (UG, VG and WG) peak-shape contributions, Lorentzian-
Gaussian mixing parameter and an asymmetry parameter) has been imple-
mented in LSQPROF.

Practical tests with LSQPROF showed that it is essential to start with correct
initial estimates of intensities before undertaking the refinement of other
parameters. Currently, in addition to the intensities, which are always refined,
a refinement protocol is used in which the first refinement of the second-set
parameters is cycle-dependent: zero-point (3-4), peak-shape parameters (5-8),
cell-parameters (9-10). Progress in refinement is monitored via an .R-factor that
can converge towards values below 4 per cent in successful cases. Jansen et al.
(1992a) showed that with LSQPROF individual intensities can be extracted of
reflections with angles as close as 0.5 FWHM (Full Width at Half Maximum).
The original Pawley algorithm only extracts reliably to 1.0 FWHM.

10.5 Estimation of the intensity of completely overlapping reflections:
the DOREES program

If the diffraction angles of individual reflections differ by less than 0.5 FWHM,
whole-pattern fitting programs like LSQPROF encounter increasing difficulties
in extracting the correct individual reflection intensities.

DM probability distributions relate not only the invariant phase sums, but
also the Eb 's. The latter feature can be exploited to estimate the \E\'s of
overlapping reflections in terms of the E 's of resolved reflections. For example,
it can be argued that for large products \Ek\ \Eh + k\, Eh\ will have a tendency to
be large as well. When averaged over all contributing triplets, this can be
expressed in the Triplet Product Estimation of \Eh . A similar procedure can be
set up for quartet phase sums ^4, but the fact that the estimation of cos^I^)
depends not only on the main-term magnitudes \Eh , \Ek , \E\\ and |£h + k + i but
also on the cross-term magnitudes £h + k , |-Eh + i an<3 -Ek + il must also be taken
into account. Large cross-term |.E|'s lead to (003(^4)} ~ 1 (positive quartets)
while (003(^4)} ~ — 1 is expected for small cross-term magnitudes (negative
quartets, e.g. Hauptman 1974; Schenk 1974). After inserting an estimate of
cos('I'4) on the basis of six magnitudes Eb — -Eh + il, the remaining £k + i| can be
expressed as being proportional to |£1

h£
1
k£1£

1
h + k + 1|(cos(1I'4)). After averaging

over all quartets in which Ek + i\ occurs with the six other magnitudes known, a
Quartet Algebraic Estimation for |.Ek + i is defined.

The Triplet Product Estimation and the Quartet Algebraic Estimation are
two out of five techniques used in the program DOREES (Jansen et al. 1992ft) to
estimate the E's of completely overlapping reflections. The quality of the
estimates by each technique separately is not high and should be used only
qualitatively to rank the estimates. On the basis of the individual ranking
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numbers N{, one for each estimation technique, and user-supplied weights wh an
overall figure of merit Mh = XX'̂ '/ZX' determines the classification of an \Eh

as probably strong or weak.
On basis of the Mh and user-supplied values Mstrong and Mweak, the over-

lapping reflections are divided into three groups: a 'strong' group consisting of
the Mstrong reflections with the smallest Mh values, a 'weak' group of Mweat
reflections with the largest Mh while the remaining reflections form an 'inter-
mediate' group. Subsequently, intensity redistribution is carried out in which, in
comparison to the initial equipartitioned intensities, the Mstrong reflections gain
intensity, the Mweak intensities lose intensity and remaining intensities stay the
same. Currently, 75 per cent of the intensity of a weak reflection is redistributed
towards strong reflections (50 per cent) and intermediate ones (25 per cent). In
this way, a strong reflection in a cluster of TV reflections, of which Ns and Nw are
strong and weak respectively, will gain intensity from the intermediate (z) and
weak (w) reflections in its cluster according to the scheme:

with dmin = 0.5 FWHM if LSQPROF is used. After one run of DOREES,
the Mstrong and Mweak reflections are included in the set of single reflections
with an appropriate weight (Jansen et al. 1993). This also applies to inter-
mediate reflections that remain as a single element of a cluster after the removal
of strong and weak reflections. The resulting set of intensities can be processed
again. This iteration continues until either a sufficient number of large \E\'s has
been extracted to start a DM run or until no significant changes occur in the
intensity distribution.

10.6 Direct methods for powder data in practice: the POWSIM package

The program package POWSIM has been designed to solve crystal stru-
ctures from X-ray and neutron powder diffraction data. The main sequence
of routines in POWSIM is LSQPROF, ITOF, NORMAL, SIMPEL88,
EXFFT and DMS. In the routine LSQPROF, the powder pattern is fitted

where

and
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into single-crystal-like integrated intensities for reflections that are at least
0.5 FWHM apart (Section 10.4). Subsequently, in ITOF (Jansen 1991), a
Lorentz-polarization correction is applied, and in NORMAL (Main 1976), the
F -values are normalized to \E\'s using the Wilson plot. If LSQPROF results in
a sufficient number of large \E\'s, the phase problem can be handled directly by
the DM program SIMPEL88 (Peschar 1990). The structural model is then
visualized by calculating an E -Fourier-map with EXFFT (Ten Eyck 1977) and
interpreted by means of DMS (Main and Hull 1978).

Starting at NORMAL, a second (optional) cycle of routines can be carried
out: NORMAL, TRIQUA88 (+FOUR), DOREES, ITOF (and back to
NORMAL). Very often many peaks overlap and the condition of a large
number of large \E\'s is not satisfied. By means of DOREES, the number of
single -crystal-like intensities, and thus the number of \E\'s, can be enlarged by
estimating the latter on the basis of the reflections that are completely resolved.
For this purpose, triplet and quartet relations are set up in TRIQUA88. In the
later stages of DOREES, if approximately half of the reflections are single,
peaks from an origin-removed Patterson (calculated with FOUR) can also be
used together with the four DM-based techniques. This second cycle is repeated
until either the structure can be solved or until the weights of the newly resolved
\E\'s become too small.

Table 10.1 Some

A
B
C

D

a

13.20
13.66
9.64

11.07

previously

b//3

7.58
12.05
7.58

112.9
7.61

unknown structures

c

8.554
7.63
8.54

25.55

Z

2
4
2

4

solved by POWSIM

Space group 7V(asymm)

Pnma 12
Cmcm 9
P2l/m 1 1

Pnma 27

LSQPROF DOREES

26» NTOT NSINGLE R(in %) N SINGLE E >\.Q AT (out of)

A
B
C
D

10-65 200
9-96 338
8-70 283
6-65 435

30
77
85

117

3.8
2.0
2.2
5.2

130
181
167
226

37 4(12)
59 3(9)
61 7(11)
71 18(27)

A: Ag2 • 3MoO3 • 1.8H2O Silver Trimolybdate (Lasocha et al. 1994)
B: K2 • 3MoOi0 • 3H2O Potassium Trimolybdate (Lasocha et al. 1995a)
C: (NH4)2O • 3MoO3 • H2O Ammonium Trimolybdate (Lasocha et al. 1995ft)
D: 2(C6H5NH3) • Mo3Oi0 • 4H2O Anilinum Trimolybdate (Lasocha et al. 1995c)
NTOT is the total number of reflections in the 29 interval.
NSINGLE is number of single-crystal(-like) reflections.
R(%) is the ^-factor after the LSQPROF run.
N (out of) is the number of atoms (out of total number of atoms) found by POWSIM.
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When applying DM to powder diffraction data rather than to single-crystal
data, a conspicuous difference is that the 5-value is often negative, in particular
if the 26>-range is limited. Data can be renormalized with a more realistic
(positive) B, but recent indications exist that the renormalized \E\'s are not
necessarily more suited for structure solution.

A practical rule in DM states that the number of strong |£i,|'s should be at
least ten times the number of atoms (in the asymmetric unit with equal scat-
tering power) to be visualized. In the case of powder data, the single-crystal limit
of a 'strong' Eh (> 1.2) is dropped to |.E|>1.0 and in the later stages of
DOREES sometimes to even smaller values because otherwise too few |.E|'s are
available to generate (semi-)invariants. For example, in the case of some
molybdates recently solved with POWSIM (Table 10.1, compounds A-C), the
number of single reflections after LSQPROF (using 0.5 FWHM as the limit for
peaks to be resolved) is only 30-85 and only 10-25 of them have an \E\ > 1.0.
This indicates that at most 1-2 atoms can be expected according to DM
experience. The structures listed in Table 10.1 could not be solved after
LSQPROF. Only after DOREES had been applied (five cycles, using 7Vstrong = 5
and yVweak= 10, with the use of the Patterson criterion in the last two cycles)
could partial structural models be obtained.
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11.1 Introduction

In the last 10 years the number of structure determinations from powder data
has increased surprisingly. Improvements in computational techniques and the
use of high-resolution synchrotron facilities have made such progress possible.
Nevertheless, ab initio structure solution from powder data is still a challenge in
many cases. The combination of peak overlap, an uncertainty in the back-
ground signal and possible preferred orientation effects makes an unambiguous
and accurate determination of the integrated intensities of the individual
reflections difficult, if not impossible. This in turn makes crystal structure
solution from powder data more complicated. In particular, the low accuracy of
the estimated structure-factor moduli causes the application of Direct methods
to be less than straightforward. The most recent advances in this field (Weeks
and Miller 1996; Sheldrick 1998; Burla et al. 1999) show that even crystal
structures with more than 2000 atoms in the asymmetric unit can be solved by a
direct phasing procedure, provided high-quality single-crystal data up to about
1A resolution are available. Conversely, high-quality powder data do not
necessarily transform into accurate structure-factor moduli and the real resolu-
tion of the information may be lower than 1 A. The problems become more
serious for organic compounds where the scattering at high angles rapidly
decreases because of the presence of light atoms and because of thermal motion.
One possible way of increasing the probability of successfully solving a structure
from powder data is to improve the methods used to extract the integrated
intensities from the diffraction pattern. Additional information can be exploited
in the intensity extraction process, and methods for doing so will be described
in the first part of this chapter. Then some successful applications of Direct
methods will be discussed.
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Table 11.1 Code name, crystal chemical information, and data details for the test
structures. X: conventional X-ray data, N: neutron data, S: synchrotron data

Code name

AGPZ (X)
BACO (N)
BAMO (X)
BENZ (S)
CF3BR (N)
CFCL (N)
CFI (N)
CIME (S)
CROX (X)
CUPZ (X)
DADA (X)
LAMO (X)
LASI (N)
LEV (S)
MES (X)
METYL (S)
NBPO (S)
NIZR (S)
PBS (S)
SAPO (X)
SBPO (S)
SULPH (N)
YONO (S)

Space
group

Pbca
C2/m
P2l

P2l/a
P2l/a
Fddl
Cmca
P2l/n
PI
Pbca
P 2, 2, 2,
P2l/a
P2l/c
R3m
P2l/c
1222
C2/c
P2l/n
Pbca
Pmmn
P2l/n
Pbcm
P2i

Unit cell content

Ag8N16C24H24

Ba4C8020D8

Ba4Mo12 O40

C24F12

C4Br4F12

CsF16Cl16

C8F24I8

S4C4oN24H§4

Cr8021

Cu8N16C24H24

Ti8K4Sii2O40

La4 Mo20O32

La8Si8O28

[Si540108]3C8NH16

C24N4020S4H52

Na16C16H48

Nb200120P28

Ni4Zr8P4016

Pb8S16024

Si32064N2C48

Sb8P14048

S8D16

Y8026N2H18

2d range

5.0-80.0
20.7-150.0
10.0-119.0
5.0-100.0
6.0-150.0
5.0-150.0
10.0-150.0
8.01-84.99
6.0-80.0
5.0-80.0
10.0-95.0
11.0-69.0
10.0-115.724
8.0-85.6
5.0-88.0
5.2-70.0
3.0-60.0
8.0-52.0
7.5-79.8
5.0-79.98
6.0-100.0
7.0-150.0
7.0-80.0

Number of
reflections

258
272

1220
716
375
203
428
924
657
243
518
271
253
323
719
318

1201
627
477
716

1071
220
680

d
(resolution)

1.198
0.988
0.894
0.916
0.989
0.826
0.826
1.13
1.083
1.198
1.045
1.357
1.382
1.132
1.109
0.956
1.000
1.175
0.961
1.199
0.947
0.947
0.959

11.2 A set of test structures

In addition to the theoretical aspects, a number of applications to real experi-
mental data will be described in this paper. For the convenience of the reader,
the code names and associated crystal chemical information for a set of test
structures are given in Table 11.1.

11.3 Performance of extraction algorithms

The efficiency of the intensity extraction process depends on the quality of the
data as well as on the mathematical algorithm used for the decomposition of the
experimental profile. Two main methods have been used (see Chapter 8):

1. The Pcnvley method (Pawley 1981) minimizes the sum of the square of the
differences between the observed and the calculated profiles. The integrated
intensities, the background polynomial coefficients, the peak-shape
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parameters, the unit cell etc. are all refined in a least-squares process. The
system is often ill-conditioned and may return negative intensity values.
Special techniques have been implemented to avoid such a wild variation of
intensity (Jansen et al. 1992; Sivia and David 1994).

2. The Le Bail method (Le Bail et al. 1988) is based on an original proposal by
Rietveld (1969). It does not require inversion of a least-squares matrix and
is computationally efficient, but does not provide standard deviations for
the intensity estimates.

The better the efficiency of the decomposition program, the smaller the dis-
crepancy between the calculated and the true structure-factor moduli. It is
expected that the smaller the discrepancy, the more straightforward the phasing
process. It is reasonable to ask how accurate modern powder pattern decom-
position programs are. A list of the RD factors obtained by the Le Bail-based
decomposition routine in EXPO (Altomare et al. 1999a) is given for the test
structures in Table 11.2 (second column). We define:

Table 11.2 The ̂ parameter corresponding to the EXTRA default run (Rn), to the run
exploiting pseudo-translational information (^PSEUD)» Patterson information in the
reciprocal space (^PROB)» and Patterson information in direct space CRpAxr) f°r some
test structures

Code name

AGPZ (X)
BACO (N)
BENZ (S)
CF3BR (N)
CFCL (N)
CFI (N)
CROX (X)
CUPZ (X)
LAMO (X)
LASI (N)
LEV (S)
MES (X)
METYL (S)
NBPO (S)
NIZR (S)
PBS (S)
SAPO (X)
SBPO (S)
SULPH (N)
YONO (S)

RD -RpsEUD

0.52 0.33
0.31
0.41
0.30
0.21
0.49
0.37
0.47
0.36
0.38
0.59
0.46
0.30
0.39 0.33
0.42 0.42
0.41
0.45
0.49 0.31
0.32
0.32

-RpROB

0.47
0.28
0.37
0.27
0.19
0.46
0.31
0.41
0.35
0.36
0.56
0.42
0.27
0.30
0.36
0.38
0.42
0.32
0.30
0.25

RfAm

0.39
0.28
0.36
0.27
0.16
0.45
0.33
0.34
0.35
0.37
0.52
0.44
0.27
0.24
0.37
0.38
0.41
0.29
0.27
0.27

0.35
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For each test structure, \Fh (true) is the structure-factor modulus which
corresponds to the published refined structure, | Fh (calc) is the corresponding
modulus obtained by EXPO using default conditions. It is soon apparent that
the performance of a powder decomposition program depends on: (a) the size of
the unit cell and the space group (both affect the amount of peak overlap); (b)
the radiation source and instrument (Chapters 3-5); and (c) the conditions
under which the measurement is performed (Chapter 6).

The values in Table 11.2 indicate that, for normal-sized structures, RD factors
lower than 0.25 are rarely obtained. RD factors between 0.35 and 0.50 are more
common. How does this inaccuracy affect the triplet invariant estimates? Some
statistics for triplet phase estimates for three test structures with high RD values
(SAPO, LEV and LASI with RD = 0.45,0.59 and 0.38, respectively) are given in
Tables 11.3-11.5.

The estimated structure-factor moduli have been normalized by a typical
Direct methods program (in these cases by the EXPO section devoted to direct
phasing) to obtain E \ moduli. A subset of NLAR reflections has been isolated
(those having the largest | E \ values) for SAPO, LEV and LASI (NLAR = 263,
125 and 84 respectively). Triplets found among the NLAR reflections have been
estimated via the P10 formula (Cascarano et al. 1984), which can identify
positive and negative cosine triplets. A reliability factor G is associated with
each triplet: large positive G's correspond to triplet phases close to 2-Tr, large
negative G's to triplet phases close to TT, and small | G values to inaccurate
estimates.

In Tables 11.3-11.5, two sets of statistics are shown: one for the true structure
factor moduli (i.e. in absence of experimental errors, to simulate the statistics
which would be obtained if single-crystal data were available), and one for the

Table 11.3 SAPO: triplet statistics

Positive estimated

ARG Number

triplets

%

Negative

Number

estimated triplets

%

Experimentally estimated moduli
0.0 9859
0.4 1495
0.8 221
1.2 61
1.6 16

True moduli
0.0 5833
0.4 2207
0.8 826
1.2 382
1.6 217

60.7
76.7
93.2
96.7

100.0

72.8
85.9
95.4
99.5

100.0

0
0
0
0
0

764
22
2
0
0

0.0
0.0
0.0
0.0
0.0

53.8
63.6

100.0
0.0
0.0
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Table 11.4 LEV: triplet statistics

Positive estimated triplets

ARG Number

Experimentally estimated
0.0 3576
0.4 772
1.0 18
1.4 3

True moduli
0.0 1610
0.4 980
1.0 353
1.4 189
2.0 63

Table 11.5 LASI: triplet

%

moduli
59.8
69.4

100.0
100.0

76.8
88.9
98.0
99.5

100.0

statistics

Positive estimated triplets

ARG Number

Experimentally estimated
0.0 484
0.4 243
1.0 35
1.4 15
2.0 5

True moduli
0.0 275
0.4 184
1.0 76
1.4 40
2.0 13

%

moduli
58.5
63.0
74.3
60.0
60.0

75.6
81.0
96.1

100.0
100.0

Negative estimated

Number

0
0
0
0

169
17
5
2

0

Negative estimated

Number

0
0
0
0
0

21
1
0
0
0

triplets

%

0.0
0.0
0.0
0.0

63.9
76.5

100.0
100.0

0.0

triplets

%

0.0
0.0
0.0
0.0
0.0

42.9
0.0
0.0
0.0
0.0

moduli originally obtained by EXPO. In each case, statistics for the negative
estimated triplets are separated from the positive ones, because of the special
role the latter play in the phasing process. For each value of ARG, the number
of triplets (nr) with G \ larger than ARG and the per cent of correctly
estimated triplets are given. The examples show how the triplet estimates
become less reliable as the accuracy of the estimated structure-factor moduli
decreases. The worst situation occurs for LASI, where the total number of
estimated triplets is very small (less than 500) and their accuracy quite
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unsatisfactory (close to 60 per cent). This is due to the combined effect of the
limited resolution (1.38 A) of the experimental data and to the inefficient pattern
decomposition. A further detail deserves to be stressed: when the true data were
used, a number of negative triplets were always identified by the P10 formula.
When experimental powder data were used, no negative triplet was found. The
reason for this systematic feature is the overestimation of the weak reflection
intensities. They frequently overlap with stronger reflections and EXPO is not
able to evaluate them correctly. As a consequence, negative quartet estimates,
which are based on weak reflection intensities, are also inaccurate. The data in
Tables 11.3-11.5 also indicate that even quite simple crystal structures may not
yield to phasing trials if only powder data are available.

11.4 Some warnings about the use of powder data

A short list of the main pitfalls a Direct methods user has to avoid when using
powder data (Giacovazzo 1996) is given below.

1. Do not use Wilson statistics to establish whether or not the space group is
centrosymmetric. Most of the features of the estimated normalized
structure-factor moduli distribution are dependent upon the pattern-
decomposition method rather than the crystal structure (Cascarano et al.
1992; Estermann et al. 1992). For example, the Pawley technique generates
amplitude distributions characterised by large percentages of very large and
very small intensity values. This increases the distribution variance and
simulates statistics indicative of a centrosymmetric structure even when it is
actually non-centrosymmetric. Conversely, the Le Bail method tends to
equipartition the intensities of the overlapping reflections to produce a
rather uniform intensity distribution indicative of a non-centrosymmetric
structure.

2. Do not be too confident about the overall thermal factor value obtained via
a Wilson plot; sometimes it is even negative. The value depends on:
(a) truncation of the experimental data at sin 0/X values where Debye effects
are important; (b) imperfect modelling of the background and of the peak
shape; (c) possible imperfect absorption correction for transmission
geometry or surface roughness for reflection geometry.

3. Be suspicious of the information provided in the high-resolution region of
the powder pattern. Structure factor moduli estimates can be markedly
wrong in this region, where a high degree of reflection overlap occurs.

4. Do not apply Direct methods without first checking for the presence of
preferred orientation. If this occurs, some E\ normalized structure factor
moduli will be systematically larger than their true values and some others
systematically smaller, and this will have obvious consequences on the
efficiency of the phasing process. A statistical check can be performed on



196 DIRECT METHODS IN POWDER DIFFRACTION

the | E | distribution in order to reveal the possible presence of preferred
orientation (Altomare et al. 1994, 1996a; Peschar et al. 1995). If this has
been established, suitable corrections to the E values can be applied.

5. Solving the structure with neutron data may be more difficult than with X-
ray data if some heavy atoms are present. In this case, X-ray data can be
used to locate the heavy atoms, and then the crystal structure can be
completed/refined by combining the information contained in both
datasets.

6. As a result of the uncertainty of the structure-factor moduli, the figures of
merit defining the best trial solution in a direct phasing approach cannot be
as discriminating as they are with single-crystal data.

7. The amount of information in the experimental pattern should be evaluated
before a crystal structure determination or refinement is attempted. It may
be that the information is not sufficient to guarantee success. An algorithm
recently proposed by Altomare et al. (1995) (see also a more recent
contribution by David (1999)) provides an estimate of the global
information in terms of statistically independent observations. The larger
their number (M-m&), the higher the information content of the pattern
(see Table 11.6).

11.5 Powder pattern decomposition using supplementary prior information

The most important advantage of the Le Bail method is that it may profit from
the use of supplementary information (Altomare et al. 1996ft). The approach is
sensitive to the starting point: if one starts from integrated intensity values
closer to the true values rather than from arbitrary intensities, results can be
improved and the accuracy increased.

Different types of information become available during the phasing process
and can be used as prior information in a subsequent decomposition step:

1. Pseudo-translational symmetry (Altomare et al. 1996c).
2. The expected positivity of the Patterson function in reciprocal space

(Carrozzini et al. 1997).
3. The expected positivity of the Patterson function in direct space (Altomare

et al. 1997; Estermann et al. 1992; Estermann and Gramlich 1993).
4. A located molecular fragment (Altomare et al. 1999ft).

Each can be used in a cyclic procedure in which the experimental pattern is
decomposed to provide a first estimate of the structure-factor amplitudes. Once
one of these types of information is available it can be included as prior
information for a new pattern decomposition. EXPO is able to perform this
cyclic process automatically. Brief descriptions of each category of information
are given in the following sections.
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Table 11.6 Summary of the structure solutions of the test structures

Code name

AGPZ (X)
BACO (N)
BAMO (X)
BENZ (S)
CF3BR (N)
CFCL (N)
CFI (N)
CIME (S)
CROX (X)
CUPZ (X)
DADA (S)
LAMO (S)
LASI (N)
LEV (S)
MES (X)
METYL (S)
NBPO (S)
NIZR (S)
PBS (S)
SAPO (X)
SBPO (S)
SULPH (N)
YONO (S)

NATS1

4
completed

27
completed
completed
completed
completed
completed
completed

5
completed

12
8
8
11

completed
completed

11
5
9
13

completed
completed

NATS2

6
6

28
9
3
3
3

17
15
6

16
14
11
17
13
5

22
18
6

21
17
3

18

(sin 0/A)^

0.17
0.26
0.32
0.30
0.25
0.37
0.37
0.19
0.21
0.17
0.23
0.13
0.13
0.19
0.20
0.27
0.25
0.18
0.27
0.17
0.28
0.26
0.27

Mmd

72
127
396
258
141
106
149
484
202

72
197
126
105
103
229
169
481
239
179
183
337
93

203

M

258
272

1220
716
375
203
429
924
657
243
518
271
253
323
719
318

1201
628
477
717

1071
220
680

Mind/M

0.28
0.47
0.32
0.36
0.38
0.52
0.35
0.52
0.31
0.29
0.38
0.46
0.42
0.32
0.32
0.53
0.40
0.38
0.38
0.25
0.31
0.42
0.30

NATS1 is the number of correct atomic positions localised by EXPO, NATS2 is the number of
positions to be found, Mind is the number of independent observations, M the number of reflections
and Miad/M their ratio.

11.5.1 Pseudo-translational symmetry

From the statistical analysis of the normalized structure factors, EXPO is able
to reveal the presence of pseudo-translational symmetry effects. If the fractional
scattering power (FSP) satisfying pseudosymmetry is larger than some mini-
mum threshold, the EXPO user can decide to exploit the pseudoinformation in
a new EXPO run. The FSP value is usually underestimated in the first run, so in
the second run the information on pseudo-translational symmetry is used to
modulate the starting intensities for the Le Bail algorithm. The rationale of the
procedure is the following: if two reflections completely overlap and one is a
superstructure and the other a substructure reflection, a sensible choice is to
assign a larger intensity to the substructure reflection.

In Table 11.2, the RF values in column 3 were obtained by using
pseudoinformation for those structures revealing pseudoeffects. They can be
compared with the default RD values in column 2.



11.5.2 Expected positivity of the Patterson function in reciprocal space

The results of squaring a Patterson map from which the origin peak has been
removed, viewed in reciprocal space, suggested the relations (Cascarano et al.
1991):

for centrosymmetric space groups, where Eb is the normalized structure factor
and TV is the number of equivalent atoms in the unit cell.

Once the pattern decomposition has been performed, the extracted structure-
factor moduli can be normalized and used to obtain the probabilistic estimates
for each reflection by applying eqns (11.2) and (11.3). The estimates can then be
input into the decomposition routine of EXPO and this improves the decom-
position, because the starting point is more reliable. In Table 11.2 the Rvalues
in column 4 correspond to the extraction process exploiting the above relations.

11.5.3 The expected positivity of the Patterson function in direct space

The Patterson information in direct space is also used in EXPO. The default-
structure factor moduli are used to calculate a Patterson map, and then the map
is modified by reducing the origin peak and by deleting low-density points. The
inverse Fourier transform of the modified map provides updated squared-
structure-factor moduli to use for a new calculation of the Patterson map and so
on cyclically. After a few cycles, the final updated diffraction intensities are used
as a starting point for a new pattern decomposition. The results are shown in the
column 5 of Table 11.2.

11.5.4 A located molecular fragment

The recognition of a partial structure solution by a default EXPO run can be
taken into account in four different ways:

1. The structure-factor moduli calculated from the fragment are recycled for a
new pattern decomposition process.

2. The structure-factor moduli calculated from the fragment are used to
obtain a profile difference between the observed experimental pattern and
the fragment-dependent calculated profile. Then the Le Bail algorithm,
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for non-centrosymmetric space groups, and:
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suitably revised for taking into account the presence of negative regions in
the difference profile, is run to decompose this profile and to extract the
difference integrated intensities. These are then added to the integrated
intensities calculated from the fragment and are used as prior information
for a further EXTRA run.
The probabilistic relation:

is used. Fph is the structure-factor modulus calculated from the fragment,
and ^2qfj(h) is the summation of the squared scattering factors extended to
the atoms not yet localized. The relationship in eqn (11.4) supplies the
structure-factor moduli estimates to be used as starting point for a better
pattern decomposition.

4. The intensity values deduced in 1, 2 and 3 are averaged and exploited for a
better pattern decomposition.

The RF values corresponding to the four different procedures are shown in
Table 11.7 for some test structures and some molecular fragments. Tables 11.2
and 11.7 show how recycling prior information can improve the powder pattern
decomposition process. This means that the unavoidable loss of information
due to overlapping, background, etc. can be partially recovered. The different
types of information are correlated, so a choice is necessary. The following
strategy seems to work well: if pseudoeffects are large, pseudoinformation must
be preferred; Patterson information works well for heavy atom structures;
otherwise the procedure using eqns (11.2) or (11.3) can be used; information on
a located fragment can be usefully applied when a partial solution is obtained.

Table 11.7 Test structures solved using a selected fragment and the RF values for each
of the four procedures

Code name Selected fragment (%) Rl R2 Rj R4

AGPZ (X)
BAMO (X)
CUPZ (X)
DADA (X)
LAMO (X)
LASI (N)
NBPO (S)
NIZR (N)
SBPO (S)
YONO (S)

1 Ag (97.2 %)
2 Ba (37.8 %)
1 Cu (92.3 %)
1 Ti 2 K (54.4 %)
1 La 2 Mo (55.8 %)
2 La (34.1 %)
3 Nb (82.7 %)
2 Zr (68.6 %)
2 Sb (87.9 %)
4 Y (95.8 %)

29.15
39.06
27.15
35.81
33.51
34.78
27.03
40.03
26.59
20.30

30.96
41.37
28.73
30.95
33.73
35.51
25.63
35.98
26.82
20.70

29.26
38.92
27.20
35.83
33.43
34.53
27.14
39.94
26.68
20.37

29.47
38.06
26.53
31.92
32.75
33.55
23.99
36.09
23.25
20.15

3.
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11.6 Applications

In Table 11.6, the number of correct atoms located by EXPO and the total
number of positions to be found in the different test structures are given. Most
structures are solved completely, but for some, only the heavy atoms were
located: the light ones can be found by difference Fourier techniques. The
structure solution failures can be correlated with small M-m^M values or/and to
small (sin $/A)max, showing that a necessary condition for success is high quality
experimental data. This is where synchrotron radiation can be helpful.

Two recent successes with EXPO (Knudsen et al. 1998; Chan et al. 1999)
proved that the ab initio solution of organic crystal structures with a large
number of atoms in the asymmetric unit is not impossible, provided high quality
data are available. The first success was for fluorescein diacetate (31 non-
hydrogen atoms in the asymmetric unit and Pi space group), and the second for
sulfathiazole polymorph V (32 non-hydrogen atoms in the asymmetric unit and
P2i/n space group).

Ad hoc strategies are sometimes useful. For example, the paper by Chan et al.
pointed out the influence of the high angle data in the solution process. The
complete crystal structure solution was obtained only after several attempts:
they systematically reduced the high angle 20 limit, and refitted the background
in order to have a better separation between diffraction peaks and background
noise. Success with Direct methods for complex structures can also be obtained
with laboratory data, provided the pattern decomposition is performed care-
fully (Neels and Stoeckli-Evans 1999).
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Patterson methods in powder diffraction: maximum
entropy and symmetry minimum function techniques

Michael A. Estermann and William I. F. David

12.1 Introduction

Patterson (1934) derived the autocorrelation function of a crystal structure in
the form of a Fourier series depending on |_Fh|

2 alone and this is now generally
known as the Patterson function. By exploiting the useful properties of this
function, information about the crystal structure can be obtained. There are
many ways to exploit the Patterson function, but they are specific to informa-
tion that is available a priori, such as the presence of heavy atoms, anomalous
scatterers, non-crystallographic symmetry, or known clusters of atoms and their
relative orientations. The usefulness of the Patterson function in structure
solution is determined primarily by the type of prior information available and
the quality of the diffraction data. For example, the peaks in the Patterson map
due to vectors between heavy atoms are selectively enhanced, and this ensures
easy identification and interpretation of these Patterson peaks, which are used
to derive the positions of the heavy atoms. The lighter atoms in the structure are
then found by calculating Fourier maps based on the observed experi-
mental intensities and the calculated phase values derived from the heavy-atom
positions.

In fact, the heavy-atom technique is rather robust, even with incomplete and
resolution-limited diffraction data. This is ideal for powder data, where limits in
attainable resolution (minimum ^-spacing) and the number of intensities
suffering from reflection-overlap can seriously degrade the quality of the dif-
fraction data. Not surprisingly, the early examples of structures determination
from powder data were based either on trial-and-error methods or the Patterson
function. For example, the Patterson function was used to solve the structures
of uranyl chloride (Debets 1968), a molybdate(VI) complex (Berg and Werner
1977) and high pressure modifications of lithium wolframate (Waltersson et al.
I977a,b). In subsequent years, increasing numbers of structure solutions from
powder diffraction data using heavy-atom methods were reported. Patterson
techniques for locating molecular fragments were also applied successfully to
poor quality powder data (Wilson 1989).
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However, the ways in which Patterson maps were utilized remained
unchanged, probably because these techniques were so successful that there was
no immediate need for new developments in the area. Ideas presented in the
context of single-crystal analysis, such as the use of the positivity of the
Patterson map to interpolate experimental data beyond the measured range
(Karle and Hauptmann 1964) and modification of the Patterson map itself
(Nixon 1978), remained unused in the realm of powder diffraction until the late
1980s. It was first recognized by David (1987) that enforcing the positivity of the
Patterson function is of use in unravelling overlapping reflections. Furthermore,
he showed the benefits of employing maximum-entropy methods in producing
Patterson maps of excellent quality without Fourier truncation effects. The
application of systematic computerized Patterson vector-search techniques to
such maps was another step in extending state-of-the-art Patterson techniques
to powder data (David and Estermann 1993; Estermann 1995) as is the work of
Rius described in Chapter 13.

12.2 The crystal structure and its Patterson function

The crystal structure is related to the diffraction data by a Fourier transform,
the structure factor equation:

where j] is the scattering factor (or scattering length in the case of neutron
diffraction) of they'th atom and r,- its position in a unit cell containing TV atoms.
The structure factor is a complex quantity:

and the observed diffraction intensity 7h is proportional to the square of the
structure-factor amplitude |_Fh . In principle, a Fourier inversion of the complex
structure-factor values _Fh will reveal the scattering density:

Normal diffraction experiments give the amplitude values, |-Fhf, but not the
phase values tph. The Patterson function is given as the autocorrelation function
of the crystal:
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where p(x) is the scattering density in the real crystallographic cell. The
Patterson function has two major advantages over Direct methods. Firstly, the
Patterson function can be calculated from the experimentally derived diffrac-
tion intensities alone using:

Secondly, no additional underlying assumptions (such as the positive scattering
density assumption used in Direct methods) are made.

The vector u,-,- from the origin to a peak in the Patterson map corresponds to a
vector Xi — Xj between two atoms at positions x,- and x,- in the real crystal cell.
The interatomic vectors together are referred to as the vector set in the classic
book of Buerger (1959) on Patterson methods. The weight of a peak is pro-
portional to the product of the scattering factors fffj or the neutron scattering
lengths bfbj of the two atoms involved, and can be negative if the neutron
scattering lengths are of opposite signs. A unit cell containing TV atoms will
result in N2 vectors in the Patterson cell, of which TV will be located at the origin
due to the convolution of each atom with itself. Since the Patterson cell is the
same size as the real cell, the number of accidentally overlapping peaks increases
with N. Wrinch (1939) showed that it is possible, in principle, to deduce the
structure from the complete set of N(N— 1) non-origin Patterson vectors.

12.2.1 Patterson maps calculated from X-ray powder diffraction data

The quality of a Patterson map simply reflects the quality of the diffracted
intensity data included in the Patterson function. For X-ray diffraction data in
particular, the limit of attainable resolution affects both the resolution of
electron density peaks in the unit cell as well as peaks in the Patterson cell. The
width of a Patterson peak also increases with increasing thermal motion. In the
case of powder diffraction data, equipartitioning the intensity of overlapping
reflections results in a 'flatter' Patterson map with broader peaks and fewer
features (Estermann and Gramlich 1993). Consequently, peak positions are less
reliable and may be lost altogether, although the presence of heavy atoms may
help to overcome these limitations via enhancement of selected Patterson peaks.

12.2.2 Patterson maps calculated from neutron powder diffraction data

In contrast to X-ray scattering factors, which fall off with increasing scattering
angle, the neutron scattering length is constant and depends only upon the
isotope. Therefore, the important limit of atomic resolution (about 1 A) is much
easier to attain with neutron diffraction data, and the resolution in the real cell
as well as the Patterson cell will be improved accordingly. An atom with a
negative neutron scattering length can play a pivotal role in recognizing the
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structure. If only one of all the atoms in the cell has a negative scattering length,
then the negative peaks in the Patterson map can only be due to vectors between
that atom and all the others. Hence, the image of the structure seen from that
atom is present exclusively in the negative regions (David 1990).

12.3 Conventional methods for improving the interpretability of the
Patterson map

Patterson (1935) introduced the notion of origin peak removal and sharpening
of the overall function in order to improve the interpretability of Patterson
maps, with the ultimate aim of obtaining a Patterson map corresponding to a
point atom structure.

Broadening of Patterson peaks due to thermal motion can be corrected
by using normalized structure factors, Eb\. The degree of sharpening can be
adjusted by choosing a different overall isotropic thermal parameter B for
the calculation of the Eh\ values from the experimental Fh values.
Other sharpening techniques have been suggested (for an overview, see
Rossmann and Arnold 1993), but the choice of a particular sharpening tech-
nique is somewhat arbitrary. For example, Sheldrick (1991) uses E\Fb^

2 as
Fourier coefficients to sharpen the Patterson. Unfortunately, sharpening can
cause serious Fourier truncation effects, which appear as large ripples in the
Patterson map.

Removing the origin of the Patterson map is easily achieved by using
£h — 1 as coefficients. The shortest vectors between atoms are then no

longer obscured by the large origin peak. Up to a radius comprising the mini-
mum interatomic distance (which is generally known) the Patterson is expected
to be zero. In an origin-removed Patterson, the values of the Patterson map
in the vicinity of the origin may be set equal to zero (Karle and Hauptmann
1964).

12.4 Maximum entropy Patterson maps

For Patterson maps calculated from powder diffraction data, David (1987,
1990) presented an elegant way of handling reflection overlap, broadening due
to thermal motion, and Fourier truncation effects within the same mathematical
framework. The intensity of a group of overlapping Bragg peaks is treated as a
single experimental observation Dt. That same intensity can be calculated from
the Patterson function using:
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where /is the number of overlapping reflections. By dividing the Patterson map
into TVpix pixels, eqn (12.6) can be expressed in the form:

The calculation of the pixelized Patterson map Pk is denned as an image
reconstruction problem with linear constraints. Given the above equations, the
application of the maximum entropy method follows in a natural way by
defining a Patterson entropy:

where Qk is the a priori estimate of the Patterson map and it is assumed to be
flat. Agreement with the observed data is controlled by the x2-constraint:

Fig. 12.1. CaTiSiO5: Harker section v= 1/2 of the (a) normal Patterson, (b) sharpened
Patterson, and (c,d) maximum entropy Patterson, with (c) non-trivial Harker vectors,
and (d) cross-vectors accidentally lying in the Harker section. The Patterson origin peak
is also present at (0,1/2,1/2) due to the yl-centring of the lattice.
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while the entropy S is maximized. The Patterson entropy equation requires an
all positive Patterson map Pk. This is true for X-ray diffraction data, but as
mentioned in Section 12.2.2, negative Patterson density may occur when using
neutron diffraction data. David (1990) solved this problem by employing a two-
channel all positive and all negative maximum entropy map. A comparison of a
normal, sharpened and maximum entropy Patterson map is shown in Fig. 12.1.
Only in the maximum entropy Patterson are the interatomic vectors clearly
resolved.

12.5 Decomposition of overlapping Bragg peaks using the
Patterson function

The successful application of Direct methods of structure solution depends
crucially upon the availability of accurate integrated intensity data and so the
problem of decomposing overlapping Bragg intensities must be addressed. In
principle, it can be shown that equipartitioning (i.e. assigning equal \Eh\) is the
correct theoretical decomposition if no prior structural knowledge is available.
However, the estimates of structure -invariant relationships, such as triplets and
quartets, become systematically wrong and this tends to limit the success of
Direct methods (Estermann and Gramlich 1993).

The use of the Patterson map for extrapolating data beyond the observed
range had already been demonstrated by Karle and Hauptmann (1964) for
single -crystal data. The basic idea is very simple: a Patterson function P(u) is
obtained from the available data, a non-linear modification is applied to the
Patterson function, and the intensities for the reflections of interest are obtained
by back-transformation of the modified map:

Since an intensity value can be calculated for any arbitrary h, the dataset can be
extended beyond its observed range. The potential of this approach for extra-
polating the intensity ratio of overlapping powder intensities was first recog-
nized by David (1987) who proposed (a) the numerical back-transformation of
the maximum entropy Patterson map, and (b) an analytical solution based on
the squared Patterson which is discussed as follows.

David (1987) extended the squaring argument of Sayre (1952) to the
Patterson map, that is, The square of the Patterson looks similar to the
Patterson itself. This assumption is true if the peaks in the Patterson are
well-resolved. By assuming a Gaussian shape for the interatomic peaks in the
Patterson, the following equation was derived to estimate the fractional



The results obtained for simulated data showed a clear advantage over simple
equipartitioned \F^\ intensities. Motivated by the Sayre-Patterson approach,
known algebraic and probabilistic relationships between structure-factor
magnitudes (Bertaut 1959; Hauptmann 1972) were re-evaluated for their
applicability to powder data by a number of authors (Bricogne 1991; Cascarano
et al. 1991; Jansen et al. 1992) and are now part of Direct methods programs
written to accommodate powder data (see also Chapters 10 and 11).

Squaring as a non-linear Patterson density modification can also be applied
in an iterative and fully numerical way (Estermann and Gramlich 1993). A
Patterson map is generated using an equipartitioned dataset, each point in the
map is squared, the new map is back-transformed to obtain new Fourier
coefficients and these coefficients are then extrapolated to give a new set of F^\
for the overlapping reflections. The non-overlapping ones remain unaffected.
This cycle is repeated until the statistical intensity distribution of the over-
lapping reflections is similar to that of the non-overlapping ones. Since the
procedure is remarkably fast, it was named 'fast iterative Patterson squaring'
(FTPS). Direct methods for structure determination are more likely to succeed
with FlPS-improved data than with equipartitioned data. In the case of the
molecular sieve SAPO-40, in which 65 per cent of the reflections were treated as
overlapping, the ab initio solution with Direct methods was only possible
after the redistribution of equipartitioned intensities with the FTPS method
(Estermann et al. 1992).

12.6 Solving a crystal structure directly from a powder Patterson map

The application of Patterson methods to structure solution is favoured by the
presence of a small number of'outstanding' scatterers that dominate the vector
map. Typically, these are one or more heavy atoms, or atoms with a negative
scattering length in a neutron diffraction experiment. Prandl (1994) suggested
that multiwavelength anomalous-scattering experiments could be applied
to powder data to highlight selected atoms and thus produce interpretable
difference Patterson maps. Burger et al. (1997) obtained such maps for the
known structure of iron garnet (Fe2Ca3Ge3) by using the iron and germanium
atoms as anomalous scatterers.

A systematic way to analyse a Patterson map is based on the use of Harker
vectors (Harker 1936), that is, the interatomic vectors between symmetrically
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contribution of the nth of N overlapping reflections:
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Table 12.1 Unique Harker vectors u, v, w for the space group Pbcm and a general
position x, y, z in the crystal cell

Number

1
2
3
4
5
6
7

M

2x
2x
2x
0
0
2x
0

V

2j>
2j>
1/2
2^4
2^4
1/2
0

-1/2
-1/2

w

2z
1/2
2z+l/2
2z
1/2
0
2z+l/2

Multiplicity

1
2
2
2
4
4
4

Fig. 12.2. The set of unique Harker vectors displayed for the position A: = 0.8, y — 0.2,
z — Q.l and the space group Pbcm in the Patterson cell. The numbering 1 to 7 is the same
as in Table 12.1.

equivalent atomic positions:

where R,- is the rotational component and t,- the translation part of the z'th sym-
metry operator of the space group, and r is an atomic position in the crystal cell.

An example of a set of unique Harker vectors and their multiplicities for
the space group Pbcm and a general position x,y,z is given in Table 12.1, while
Fig. 12.2 shows the set of unique Harker vectors inside the Patterson cell.
Identifying the Harker vector (2x, 2y, 2z) may be essential for manual analysis
of the map, since it immediately reveals the position x,y,z. Unfortunately, the
Harker vector (2x, 2y, 2z) always has the multiplicity m = 1, and therefore may
be lost as it does not appear at the top of the list of the strongest Patterson
peaks.
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Once the Harker vectors have been identified in the Patterson map, they
can be used directly to determine the atomic position r. In fact, it is quite
common to locate the position of one or more heavy atoms by manual
inspection of the Patterson. However, manual analysis of the Harker vectors
becomes increasingly difficult for Pattersons of lesser quality and structures of
higher complexity. Interpreting the 'crossword puzzle' of interatomic vectors
becomes tedious and may not discriminate between atomic positions. It is
therefore desirable to have some objective measure that will quantify the like-
lihood that a heavy atom is sitting on a particular position.

12.7 Automatic location of atomic positions with the symmetry
minimum function

Just such a measure was introduced by Kraut (1961) and Simpson et al. (1965),
that is, the symmetry minimum function (SMF). It is based on the superposition
of Patterson maps and is a natural extension of the systematic Patterson vector-
search techniques developed in the early 1950s. A review of the early literature
can be found in Buerger's (1959) book. Some of these techniques were imple-
mented on computers by Richardson and Jacobson (1987), Pevelcik (1990),
Sheldrick (1991) and Chang and Lewis (1994). Only the SMF will be discussed
in the context of structure solution from powder data as it systematically
includes the space group symmetry and utilizes the entire Patterson map rather
than just the identifiable vectors. In contrast to other superposition methods,
the SMF can be justified on rigid Bayesian and statistical grounds. Indeed,
Bricogne (1992) derived the SMF by a statistical analysis based on Wilson and
Rice probability distributions in the form of a maximum likelihood function.
However, here we follow the derivation of Kraut (1961) and Simpson et al.
(1965), as it directly relates to the Harker theory and is based on geometrical
arguments.

As mentioned above, it is advantageous to utilize the information in the entire
Patterson map rather than restricting oneself to just the identifiable peaks.
Thus, all positions r in the crystal cell are tested as trial atomic positions. The
term 'crystal cell' is used here to describe the unit cell of the crystal in order to
distinguish it from the unit cell of the Patterson map, the 'Patterson cell'. The
SMF is defined as:

and quantifies a position r by automatically inspecting the Harker vectors. A
trial atomic position r in the crystal cell is ranked by comparing the heights of all
unique Harker vectors H(r) = r — C,r (i=\,...,p) in the Patterson cell (the
origin vector is not included). The quantity m,- is the multiplicity of the Harker
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vectors. The crystal cell is divided into 7Vpix grid points, and for each of these
grid points with locus r, the value of the SMF is calculated. The SMF map has
the size of the crystal cell. The peaks in the SMF map are the possible atomic
positions derived from the self-vectors due to crystal symmetry.

The SMF ensures a continuously low value for any position r unless all
Harker vectors H(r) are above background. The minimum function, and the
product and sum functions have all been described elsewhere (Buerger 1959;
Garcia-Granada et al. 1996).

There is however, an ambiguity due to the fact that the crystal structure, its
enantiomorph structure and the structure shifted by a permissible origin shift
have exactly the same vector set (homometric structures), and hence the same
Patterson map. All the images of these structures are correct solutions of the
Patterson map and are present in the SMF map. This is because eqn (12.13)
evaluates each single-site independently. For a general discussion of the sym-
metry of the SMF see, for example Hirshfeld (1968), Zimmermann (1988),
Pevelcik (1990) and Koch and Fischer (1992).

Since all the origin-shifted images of the crystal structure are present in the
SMF map, the peaks in the SMF map are not necessarily related by the same
origin, and hence these positions cannot be used directly for a structure
refinement. In order to retrieve a single image of the crystal structure, it is
necessary to search the Patterson map for vectors between atoms that are not
symmetrically equivalent. These vectors are called cross-vectors and provide
information that supplements that provided by the Harker vectors.

In practice, one peak from the SMF map with position r* is selected as the
pivotal peak. Each position r in the crystal cell is tested in respect to the fixed
position r* and its space group equivalent positions C,T* (i = 2 , . . . ,« ) by ana-
lysing the height of all the cross-vectors r — C,T* (i=l,... ,n) with the minimum
function. The function:

is called the image-seeking minimum function because it locates a single image
out of all the ambiguous origin-shifted images. This is true if the structure is
centrosymmetric. Otherwise, one of the two enantiomorphic solutions must also
be eliminated. This can be done by extending the equation to:

where a second suitable position r*2 has been selected (Buerger 1959). In a similar
manner, information about fragments or not accessible volumes in the crystal
cell, such as cavities and channels in molecular sieves, can be easily introduced
as an additional term in the above equation.
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12.8 Examples of structure solution using automated
Patterson superposition techniques

Many of the ab initio structure solutions reported from powder data are actually
based on the heavy-atom technique. In fact, some of these may even have been
solved by Patterson superposition methods. Sheldrick (1991) adapted the vector
superposition approach of Richardson and Jacobson (1987) in the popular
computer program SHELXS-90. Although primarily aimed at high-resolution
single-crystal data, it is often reported in the literature as being successful in
solving structures from powder data. Here, we present two detailed examples
which illustrate the application of maximum entropy and SMF techniques to
powder diffraction data.

The symmetry minimum function techniques described here are imple-
mented as a software module for the Xtal System of Crystallographic Programs,
Version 3.7 (Estermann 2000; Hall et al. 2000). The Xtal System is freely
available under the terms of the GNU General Public Licence and can be
accessed at http://xtal.crystal.uwa.edu.au.

12.8.1 Bismuth nitride fluoride Bi3NF6

Bismuth nitride fluoride Bi3NF6 belongs to the family of fluorite-type
compounds with an anion excess and its crystal structure was previously
unknown. As suitable single crystals could not be obtained, X-ray diffraction
data were collected from a polycrystalline sample on a laboratory powder dif-
fractometer using CuKai radiation. The diffraction pattern was indexed with
an orthorhombic cell of dimensions a = 5.817A, & = 5.702A, c=18.511A.
Integrated intensities for reflections between 8° and 90° in 20 (minimum d-
spacing 1.1 A) were obtained with the program FullProf (Rodriguez-Carvajal
1992). Of the 260 reflections extracted, 117 lay within 15 per cent of the full
width at half maximum of another reflection, and were thus considered to be
severely overlapped. An approximation to a single-crystal-like dataset was
obtained by equipartitioning the severely overlapping reflections. Systematic
absences suggested the space groups Pbc2i or Pbcm, and as the intensities of the
non-overlapping reflections had a statistical distribution indicative of a
centrosymmetric structure, space group Pbcm was chosen.

An examination of the X-ray scattering powers of the elements in the crystal
structure (Bi = 83, F = 9, N = 7 electrons) indicates that it should be possible to
locate the Bi atoms from the Patterson map. Accordingly, after normalization
of the intensities with a Wilson plot, a sharpened Patterson map was calculated
using l-Eh-Fiil as coefficients. The entire Patterson map was sampled on a
48 x 48 x 152 grid, with 0.12A per grid point. The -Eooo-fbool coefficient was
included in the calculation.

The SMF was calculated on the same grid as the Patterson map. The Harker
vectors used were those listed in Table 12.1. The ^ = 0.75 layer of the SMF map

http://xtal.crystal.uwa.edu.au
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Fig. 12.3. Bi3NF6: (a) section x — 0.15 of the symmetry minimum function, (b) section
x = 0.75 of the image seeking minimum function, and (c) section x = 0.0 of the image
seeking minimum function. The refined atomic positions of Bi(l), Bi(2), F(l) and F(4) are
included for comparison.

Table 12.2

Atom

Bi(l)
Bi(2)
F(l)
F(2)
F(3)
F(4)
N

Atomic coordinates

x

0.2207(5)
0.2923(3)

-0.0180(8)
0.3716(6)
0.6046(9)

-0.0118(11)
0.4983(9)

of BijNFg (Hofmann

y

- 0.0296(7)
0.5056(6)
0.7377(9)
0.5395(8)
0.1257(9)
0.25
0.25

et al. 1995)

z

0.25
0.0688(1)
0.6778(1)
0.8722(2)
0.25
0.0
0.0

is shown in Fig. 12.3(a). For comparison with the final structure solution, the
refined positions of the Bi atoms are included (Table 12.2). The maxima in
the SMF are the possible atomic positions, including the ones related by a
permissible origin shift (1/2, 0, 0), (0,1/2, 0) and (0, 0, 1/2).

One of the strongest peaks in the SMF (afterwards assigned to Bi(l)) was
selected as pivotal peak r* for the calculation of the IMF which was sampled
again on the same grid as the Patterson map. The values of the Patterson
function were retrieved by eight-point interpolation from a look-up table. This
is necessary because the calculation of cross-vectors also inspects the Patterson
between the pre-calculated grid points. As expected, the atoms Bi(l) and Bi(2)
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then appeared at the correct positions and the 'ghost' positions disappeared
(Fig. 12.3(b)). Rather unexpectedly, the x = 0 layer revealed the positions of all
the F atoms (Fig. 12.3(c)). By accepting only one set of positions with consistent
bond length and angles (distance B-F > 2.0 A), the F and N atoms were selected
from the list of IMF peaks.

As the F and N atoms could be neither distinguished nor refined satisfactorily
with the X-ray data, the final structure refinement was carried out using time-
of-flight neutron powder diffractometer data collected on the POLARIS
instrument at the ISIS Facility of the Rutherford Appleton Laboratory.
Hofmann et al. (1995) give full details of the neutron refinement.

12.8.2 Synthetic CaTiSiO5

The known single-crystal structure of synthetic CaTiSiO5 (Taylor and Brown
1976) was chosen as a good example of a structure that could be solved directly
from neutron powder data. Examination of the neutron scattering lengths of the
elements involved (6(10~12cm) Ti=-0.34, Ca = 0.49, Si = 0.41, O = 0.58)
clearly marked Ti as an 'outstanding' scatterer because of its negative sign.
Accordingly, data were collected from a polycrystalline sample of synthetic
CaTiSiO5 on the time-of-flight neutron powder diffractometer HRPD at the ISIS
Facility of the Rutherford Appleton Laboratory. The pattern was indexed with a
monoclinic cell of dimensions a = 7.068A, & = 8.714A, c = 6.562A and (3 =
113.82°. Using the Pawley-based intensity extraction program SR15LS (David
et al. 1992) and assuming space group A2/a, 296 integrated intensities, (minimum
^-spacing 0.9 A) of which 62 were considered to be severely overlapping, were
extracted. For a list of reference atomic coordinates see Table 12.3.

A normal Patterson map (Fig. 12.1 (a)), a sharpened Patterson map
(Fig. 12.1(b)) with Fourier coefficients |£hFh| and a two-channel maximum
entropy Patterson map (Fig. 12.1(c) and (d)) (David 1990) were calculated on a
32 x 40 x 28 grid, with 0.22 A per grid point. Their Harker sections, v = 1/2, are
shown as contour plots. The difference in quality is remarkable, with the inter-
atomic vectors clearly identified in the maximum entropy map. For clarity, the
Harker vectors are drawn separately from the cross-vectors. The cross-vectors

Table 12.3
Brown 1976)

Atom

Ca
Ti
Si
0(1)
0(2)
0(3)

Atomic coordinates

x

1/4
1/2
3/4
3/4
0.9104(5)
0.3820(5)

of CaTiSiO5 (Taylor and

y z

0.4187(2) 1/4
1/4 3/4
0.4331(2) 1/4
0.3197(6) 3/4
0.3160(4) 0.4342(6)
0.4600(4) 0.6467(6)
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Fig. 12.4. CaTiSiO5: section w — 0 of the negative regions in the maximum entropy
Patterson map. The vectors between Ti (negative neutron scattering length) and Ca, Si,
O(l) (positive neutron scattering lengths) are shown.

are lying in the Harker section accidentally. The negative region of the two-
channel maximum entropy Patterson map contains the information about the
vectors between Ti (negative scattering length) and the other atoms (positive
scattering length). The cross-vectors between Ti-Ca, Ti-Si, and Ti-O(l) can be
found in the negative regions of the Patterson section w = 0 (Fig. 12.4).

The SMF was calculated with the unique Harker vectors in Table 12.4. The
layer z= 1/4 is shown as a contour plot (Fig. 12.5). For comparison, the atomic
positions are included. The SMF map is extremely sharp and the positions of
Ca, Si, Ti and O(l) appeared in the top 10 of the peak list. All the correct atomic
positions including the ones related by a permissible origin shift (1/2, 0, 0),
(0,1/2, 0) and (0, 0, 1/2), appeared within the top 65 of the SMF peak list.

The top ten peaks from the SMF were then used as trial positions for the
image-seeking minimum function (IMF). The top 20 peaks in the IMF were
considered as candidates for atomic positions. Expected distances for Si-O
bonds (1.6 A) and Ti-O bond (1.9 A) were used to select a set of consistent
positions. The assignment of Si, Ti and O atoms was then made on the basis of
tetrahedrally and octahedrally-coordinated positions.

Table 12.4 Unique Harker vectors u, v, w for the space group
A2/a and a general position x, y, z in the crystal cell

M

2x
2x+l/2
1/2

V

2y
1/2
2y

w

2z
2z
1/2

Multiplicity

1
2
2
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Fig. 12.5. CaTiSiO5: section z — 1 / 4 of the symmetry minimum function. The atomic
positions of Ti, Si, Ca and O(l) are shown for reference. All atomic positions including the
ones related by a permissible origin shift (1/2,0,0), (0,1 /2,0) and (0,0,1 /2) appear in the map.

Table 12.5 Additional

Pivotal position

Ca
Si
0(1)
Ti

Ca
Si
0(1)
Ti

atomic positions found

Type of cross-vectors

Positive
Positive
Positive
Positive

Negative
Negative
Negative
Negative

by the image seeking minimum function

Additional atomic positions
found (rank in peak list)

Si [8], 0(3) [10], 0(1) [14]
0(3) [6], Ca [8], 0(1) [9], O(2) [12]
0(2) [2], Ca [3], 0(3) [4], Si [7]
Ti[6]

Ti[6]
Ti[6]
Ti[l]
0(1) [2], Ca [3], Si [4], O(3) [5],
0(2) [8]

The number of new correct atomic positions which are generated in the IMF
map depends on the pivotal position used (Table 12.5). As expected, only the
search with negative cross-vectors found the entire structure, and also revealed
the pivotal position as the Ti atom.

Acknowledgements

Part of this work was done by MAE during a stay as a visiting scientist at the
ISIS facility of the Rutherford Appleton Laboratory.



REFERENCES 217

References

Berg, J.-E. and Werner, P.-E. (1977). Z. Kristallogr., 145, 310-20.
Bertaut, E. F. (1959). Acta Crystallogr., 12, 541-9.
Bricogne, G. (1991). Acta Crystallogr. A, 47, 803-29.
Bricogne, G. (1992). Molecular Replacement. Proceedings of the CCP4 Study Weekend,

(ed. E. J. Dodson, S. Gover and W. Wolf), pp. 62-75. Daresbury Laboratory
Publications.

Buerger, M. J. (1959). Vector Space, pp. 252-68, Wiley, New York.
Burger, K., Prandl, W. and Doyle, S. (1997). Z. Kristallog., 212, 493-505.
Cascarano, G., Giacovazzo, C., Giuagliardi, A. and Steadman, A. (1991). Acta

Crystallogr. A, 47, 480-4.
Chang, G. and Lewis, M. (1994). Acta Crystallogr. D, 50, 667-74.
David, W. I. F. (1987). /. Appl. Crystallogr., 20, 316-19.
David, W. I. F. (1990). Nature (London), 346, 731-4.
David, W. I. F. and Estermann, M. A. (1993). Acta Crystallogr. A, 49 (Suppl.), C-37.
David, W. I. F., Ibberson, R. M. and Matthewman, J. C. (1992). Rutherford Appleton

Laboratory report, RAL-92-032.
Debets, P. C. (1968). Acta Crystallogr. B, 24, 400-2.
Estermann, M. A, McCusker, L. B. and Baerlocher, Ch. (1992). /. Appl. Crystallogr., 25,

539^3.
Estermann, M. A. (1995). Nucl. Instr. and Meth. in Phys. Res. A, 354, 126-33.
Estermann, M. A. and Gramlich, V. (1993). /. Appl. Crystallogr., 26, 396^04.
Estermann, M. A. (2000). Program SHAPE, Xtal3.7 System (ed. S. R. Hall,

D. J. du Boulay and R. Olthof-Hazekamp). University of Western Australia.
Garcia-Granada, S., Borge, J. and Gutierrez-Rodriguez, A. (1996). Anales de Quimica

Int. Ed., 92, 294-8.
Hall, S. R., du Boulay, D. J. and Olthof-Hazekamp, R. (ed.) (2000). Xtal3.7 System.

University of Western Australia.
Harker, D. (1936). /. Chem. Phys., 4, 381-90.
Hauptmann, H. (1972). Crystal Structure Determination. Plenum Press, New York.
Hirshfeld, F. L. (1968). Acta Crystallogr. A, 24, 301-11.
Hofmann, M., Schweda, E., Strahle, J., Laval, J. P., Frit, B. and Estermann, M. A. (1995).

/. Solid State Chem., 114, 73-8.
Jansen, J., Peschar, R. and Schenk, H. (1992). /. Appl. Crystallogr., 25, 237-43.
Karle, J. and Hauptmann, H. (1964). Acta Crystallogr., 17, 392-6.
Koch, E. and Fischer, W. (1992). In International Tables for Crystallography, Volume A,

Space-Group Symmetry, 3rd revised edn (ed. T. Hahn), pp. 856-69. Kluwer Academic
Publishers, Dordrecht.

Kraut, J. (1961). Acta Crystallogr., 14, 1146-52.
Nixon, P. E. (1978). Acta Crystallogr. A, 34, 450-3.
Patterson, A. L. (1934). Phys. Rev., 46, 372-6.
Patterson, A. L. (1935). Z. Kristallogr., 90, 517^2.
Pevelcik, F. (1990). /. Appl. Crystallogr., 23, 225-7.
Prandl, W. (1994). Acta Crystallogr. A, 50, 52-5.
Richardson, J. W. and Jacobson, R. A. (1987). In Patterson and the Pattersons (ed.

J. P. Glusker, B. K. Patterson and M. Rossi), pp. 310-17. Oxford University Press.



218 PATTERSON METHODS IN POWDER DIFFRACTION

Rodriguez-Carvajal, R. (1992). FullProf, version 2.2, ILL Grenoble.
Rossmann, M. G. and Arnold, E. (1993). In International Tables for Crystallography,

Volume B, Reciprocal Space (ed. U. Shmueli), pp. 230-63. Kluwer Academic Pub-
lishers, Dordrecht.

Sayre, D. (1952). Acta Crystallogr., 5, 60-5.
Sheldrick, G. M. (1991). In Crystallographic Computing 5 (ed. D. Moras, A. D. Podjarny

and J. C. Thierry), pp. 145-57. Oxford University Press.
Simpson, P. G., Dobrott, R. D. and Lipscomb, W. (1965). Acta Crystallogr., 18, 169-79
Taylor, M. and Brown, G. E. (1976). Amer. Mineralogist, 61, 435-47.
Waltersson, K., Werner, P.-E. and Wilhelmi, K.-A. (1977a). Cryst. Struct. Comm., 6,

225-30.
Waltersson, K., Werner, P.-E. and Wilhelmi, K.-A. (19776). Cryst. Struct. Comm., 6,

231-5.
Wilson, C. C. (1989). Acta Crystallogr. A, 45, 833-9.
Wrinch, D. M. (1939). Philos. Mag., 27, 98-122.
Zimmermann, H. (1988). Z. Kristallogr., 183, 113-22.



13

Solution of Patterson-type syntheses with the Direct
methods sum function

Jordi Rius

where $s generically denotes the phases <p of the subset of reflections k with
strong structure-factor magnitudes. As shown by Debaerdemaeker et al. (1985),
maximization of the Z-function can be carried out iteratively applying the
conventional tangent formula (Karle and Hauptman 1956):

13.1 Introduction

In the last decade, developments in Direct methods have been directed mainly
towards extending their applicability to macromolecules and to the solution of
crystal structures from powder diffraction data. In the case of macromolecular
structure solution, two important limitations exist. Firstly, the need for data at
atomic resolution often cannot be satisfied. Secondly, a large number of phases
need to be refined, but this problem can be partially solved by assisting the phase
refinement with direct-space filtering procedures. In the powder diffraction case,
the principal limitation is due to reflection overlap, which in most cases pro-
duces incomplete sets of intensity data. Since the peak overlap tends to increase
at higher 20, reliable intensity information can normally only be obtained at low
or moderate resolution. This reflection overlap demands powerful deconvolu-
tion algorithms in order to extract as many accurate integrated intensities as
possible and, in addition, requires effective and robust phase refinement stra-
tegies to work in extreme conditions.

Most modern Direct methods procedures for the solution of small crystal
structures are based on the maximization (or minimization) of a certain target
function expressed in terms of the phases of the large structure factors. Usually,
random values are introduced as initial estimates for the phases. The simplest
phase refinement function is the maximization of:
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Refinement of phases with the tangent formula can lead to maxima of Z that are
far from the desired local maximum, especially for crystal structures with
symmorphic space groups (i.e. space groups without glide planes or screw axes).
For such structures, the unconstrained global maximum reached is normally
wrong, and the corresponding E-ma.p only shows one or two very large peaks
(i.e. the so-called 'uranium-atom' solution). Different solutions for this type of
behaviour have been proposed. In practice, the most relevant ones have been the
use of negative quartets (Schenk 1973,1974; Hauptman 1974; Giacovazzo 1976;
Sheldrick 1990) and the Sayre-equation tangent formula (Debaerdemaeker
et al. 1985). More recently, Rius (1993) has introduced the Direct methods
modulus sum function (i.e. a sum function based on the Patterson-type modulus
synthesis, Ramachandran and Raman 1959). From this function, a tangent
formula (S1 — TF), which seems to be especially well-suited to coping with
powder data, can be derived. Accordingly, a more formal derivation of this sum
function is provided in this chapter.

13.2 Definition of the modulus sum function

Traditionally, the sum function has been used in connection with Patterson
search methods to identify the correct solutions. For example, in the case of the
shifted Patterson sum, it is used to measure the coincidence of a given set of
interatomic vectors (the calculated Patterson function) with the observed
Patterson function for different shifts. As indicated in Fig. 13.1, the procedure
consists of multiplying the height at the end of each vector by the corresponding
value of the observed Patterson function, and adding these products.

In general, the correct shift is indicated by a large value of the sum function.
When the sum function is applied to Direct methods, the coordinates of the shift
vector are replaced by the phases of the structure factors. Accordingly, the
Direct methods modulus sum function is defined by the integral:

where the integral extends over the volume V of the unit cell and should be
a maximum for the true phases. P'(u) denotes the observed modulus function
without the origin peak and P(u, $5) the calculated modulus function expressed
in terms of the collective $$ of phases of the strong reflections. One of the
distinctive features of eqn (13.3) is the suppression of the origin peak of the
observed modulus function; this peak is superfluous because the atomicity
condition is introduced later as a restriction in P(u, $s). Although eqn (13.3) has
been defined with the modulus synthesis, other Patterson-type functions giving
related sum functions are imaginable (Rius et al. 1996a; Rius 1997).
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Fig. 13.1. Two dimensional example of the application of the sum function to the
location of a vector set of five peaks (filled circles) in the observed Patterson function
(empty circles). For simplicity, the heights of all peaks are assumed to be unity. For the
wrong shift tw, the value of the sum function is three, while for the correct one tc, its value
is five. While the correct shift always gives large sum function values, the reciprocal is not
always true, especially for difficult cases.

The increased effectiveness of the S' function when compared to the
Z function can be easily understood from purely physical considerations
(Fig. 13.2). Effectively, the Z-function (eqn 13.1) is equivalent to the integral:

where P(u) possesses a large origin peak. Now, imagine a wrong <f>s solution
producing a very strong origin peak in P(u, $s). In this case, the sole product of
both origin peaks will be a large quantity. This is precisely the 'uranium-atom'
solution, as an E-map with only a dominant peak implies a P(u, $s) function
with only a strong origin peak. In other words, the non-origin Patterson peaks
play no significant role. Obviously, this difficulty disappears with the S' func-
tion. Physically, maximization of S' is equivalent to maximizing the coincidence
between the non-origin peaks of P(u) and P(u, $5). Since the uranium atom
solution is no longer possible, the probability that the refined solutions with
large S' values are correct increases dramatically for small structures.



Fig. 13.2. See caption opposite.
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(d)

Fig. 13.2. (a): One dimensional test structure with four atoms in the unit period; (b) and
(d): Observed modulus function (dots) and calculated modulus function with true phases
(line) for the test structure (a). In (d) the origin peak of the observed modulus synthesis
has been removed; (c) and (e): The products of the observed and calculated modulus
functions given in (b) and (d), respectively. While (c) is dominated by the product of the
origin peaks of the observed and calculated modulus functions, (e) is only sensitive to the
non-origin peaks.

13.3 The modulus sum function in reciprocal space

The modulus function with the origin peak subtracted is evaluated by means of
the Fourier synthesis:
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where G(h) is the structure factor of the squared-point atom structure and (G) is
the corresponding value averaged over all reflections h. For a structure satis-
fying the positivity criterion, the relationship between G(h) and the structure
factor £(h) of the point atom structure is given by the approximation (Cochran
and Woolfson 1955; Karle and Karle 1966):

where, as usual, an is equal to ̂ . Z" with Z/ being the atomic number of they'th
atom. For an equal atom structure belonging to space group PI with TV atoms in
the unit cell, the quasi-normalized structure factors £ can be replaced by the
normalized ones, E, and eqn (13.6) reduces to the equality:

For practical purposes, let the modulus sum function S' be expressed in the
form of a sum instead of an integral. This can be done by transforming it to
reciprocal space (i.e. by applying Parseval's theorem to eqn (13.3)), so that:

Now let the reflections be divided into two subsets: S being the subset of
reflections k with large E values, and W the subset containing the rest of
reflections, 1. Introducing this partitioning in eqn (13.10) yields:

G(h, $s) is the Fourier transform of p , and must necessarily be an approx-
imation to G(h) because only the phases of the reflections in S participate in its

so that:

In view of eqn (13.7) and eqn (13.8), eqn (13.5) becomes:
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calculation. Using the convolution theorem (which states that the Fourier
transform of the product of two functions is the convolution of the Fourier
transforms of the individual functions) the structure factor:

can be expressed as:

where k' and h k' belong to S. In view of eqn (13.12), the best approximation
to G(h, $s) is:

1. for the reflections in S:

where, due to the atomicity and positivity of p, the equality ^(k) = y>(k) has
been introduced in eqn (13.15);

2. for the reflections in W:

Substitution of eqn (13.15) and eqn (13.16) in eqn (13.11) gives:

where A denotes the asymmetric unit in reciprocal space. For the reflections in
S, there are three different terms in the summation with the same
cos [</?(—k) + v?(k') + </?(k — k')] values. Hence the abbreviation,
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can be introduced in eqn (13.17) and this leads to the definitive form of 5"(<f>):

13.4 The sum function tangent formula, S' — TF

According to its definition, the Direct methods modulus sum function should be
a maximum for the true phases. Consequently, the practical application of 5"(<f>)
requires an easy and effective maximization procedure. By following the con-
ventional tangent formula derivation of Debaerdemaeker et al. (1985), it can be
shown, that S'($) can be maximized with a new tangent formula called S' — TF.
The condition for an extremum is:

for every k, and application of this condition to eqn (13.19) gives:

which, after some manipulation, results in the definitive form of the S' — TF:

Notice that <f>(—1) must be updated from the refined $s value using the
expression:
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with k' and 1 k' belonging to S. Unlike most tangent formulae, the S' — TF
needs no weights for optimal use, a property that confers increased stability
upon it. Inspection of eqn (13.22) indicates that the principal contributors are
those terms with \E(h) — (E)\ large. Since the contributions of the reflections
with E magnitudes close to the average value are rather small, they are normally
left out of the phase refinement. In practice, the best results are achieved by
introducing a similar number of strong and weak reflections. The calculation of
the average value (E) is then carried out with these reflections only.

To show the capability of the S' — TF to refine phases, a series of test
calculations using single-crystal diffraction data collected from organic
compounds to atomic resolution (d~ 1 A) were performed (Rius et al. 1995a).
The test calculations were computed with the program XLENS (Rius 1994)
using the NES strongest and the NWEAK (= NES - VNES) weakest reflec-
tions. The tests were selected to cover the following situations:

(1) low- and high-symmetry space groups;
(2) space groups with fixed and non-fixed origins;
(3) equal-atom structures with the same symmetry but with different numbers

of atoms in the unit cell.

The tests showed that refinement of phases with the S' — TF function was
very effective in all cases. However, the most spectacular results (with success
rates in the range between 10-70 per cent) were obtained for structures in which
the origin can float in at least one direction. These tests also allowed assessment
of the decisive influence of the size of the crystal structure upon the success rate.
By using three structures belonging to P2\2i2\ but with TV values equal to 108,
188 and 340, the respective success rates gradually decreased (10, 1 and 0.1
per cent respectively). Finally, comparison of the results of the S' — TF with
those obtained using the tangent formula incorporating the most reliable
negative quartets (Sheldrick 1990) indicates that the success rate of the former
is, in general, an order of magnitude higher.

13.5 Application of the sum function tangent formula to powder
diffraction data

In the application of Direct methods to powder data, the most decisive param-
eter is the upper resolution limit of the set of extracted integrated intensities.
Experience shows that for structures with no systematic overlap or pseudo-
symmetry, the set of extracted intensities is very often almost complete up to
a certain upper resolution limit. The latter depends on (a) the size and symmetry
of the crystal structure, (b) the quality of the sample and (c) the experimental
conditions. If the set of extracted integrated intensities is assumed to be
accurate enough then, before the S' — TF can be applied, the influence of the
upper resolution limit must be understood. As has already been shown
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(Rius et al. 1995ft, 1996ft) the required data resolution for applying the S' - TF
largely depends on the closest separation So between dominant scatterers in the
structure; that is, for a given So the required intensity data resolution expressed
in terms of the minimum ^-spacing fi?m;n is given by

Obviously, the corresponding E-map will reveal principally the partial structure
of the dominant scatterers. According to the maximum dmin value required, the
crystal structures can be classified into:

1. Organic compounds. This is the most unfavourable case for X-ray powder
data. As the C atoms are typically the dominant scatterers, and they are only
1.4-1.5 A apart, the corresponding maximum dmin value will be close to 1 A
resolution. This demands the combination of rather well crystallized samples
with the use of synchrotron radiation. To date, no purely organic compounds
(C,N,O,H) have been solved from powder data by means of the S' — TF.

2. Compounds with heavy atoms. This is the most favourable case. In such
compounds, the separation So between heavy atoms is rather large, so that
the S' — TFca.n locate them even with data at low resolution. One example is
provided by the zeolite RUB- 10. Crystal data: monoclinic with space group
P21/a and a =13.1 12(2), ft= 12.903(1), c= 12.407(2) A, /3= 113.50°,
V= 1925 A3, unit cell content: [Si32B4O72][N(CH3)4]4. The general connec-
tivity pattern of the silicate framework which belongs to the clathrasil family
was determined by Patterson search methods (Gies and Rius 1995) using
laboratory powder diffraction data up to 2 A resolution (Fig. 13.3). Since the

Fig. 13.3. Perspective view of zeolite RUB-10 showing the arrangement of the template
cations within the double cages. Small circles: T-atoms (Si,B). Large circles: Template
cations showing rotational disorder. For clarity the bridging oxygen atoms have been
left out.



Fig. 13.4. (a): Section y = 0 of the .E-map of RUB-10 obtained from phase refinement
with the S' — TF using data up to d~2 A resolution; (b) Perspective view along b of
approximately the same portion of the unit cell showing the correct location of the
template cations.



230 SOLUTION OF PATTERSON-TYPE SYNTHESES

template cations show rotational disorder at room temperature, they can be
regarded as heavy scatterers, and consequently, this example represents the
ideal case for testing the power of the S' — TF. By introducing the 30
strongest and 20 weakest reflections (from a total of 83 observed reflections at
2 A resolution) into XLENS, the set with the best FOM clearly shows the
correct template cation arrangement (Figs 13.4(a,b)).

3. Zeolite-like compounds. This case is less favourable. Fortunately, experience
has shown that the Si atoms can be regarded to some extent as dominant
scatterers (i.e. the bridging oxygen atoms play no significant role). Since the
Si-Si distance in zeolites is approximately 3.1 A, values of dmin up to
approximately 2 A can be tolerated, and the Si tetrahedra will show up as
single peaks in the corresponding E-map. This is illustrated in the structure
solution of the layer silicate RUB-15 (Oberhagemann et al. 1996). Crystal
data: orthorhombic with space group Ibal and a = 27.905(6), b = 8.404(1),
c= 11.518(2), F=2702A3, unit cell content: [Si24O52(OH)4] [N(CH3)4]8 •
20H2O. The 76 low resolution reflections up to 26»~41° (CuKaO were
introduced in XLENS with the overall B fixed at 3.5 A2. The phases of the
20 strongest reflections were refined with the S' — TF using the 16 weakest
reflections as additional information. The projection of the E-map
corresponding to the solution with the best combined figure of merit is
shown in Fig. 13.5(a). For clarity, the same projection of part of the
structure is reproduced in Fig. 13.5(b). Inspection of both figures allows one

Fig. 13.5. See caption opposite.
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Fig. 13.5 (a): (010) projection of the E-map of RUB-15 obtained from phase refinement
with the S' - TF (d > 2 A) showing the silicate sheets normal to [001] and the template
cations; (b): Perspective view along b of the same portion of the unit cell (without the
water molecules). It can be clearly seen that both the tetrahedral Si units as well as the
tetramethylammonium cations appear as spheres.

to confirm that, at this resolution, the Si tetrahedra appear as well-resolved
peaks and may be considered as dominant scatterers together with the
template cations.

Some recent relevant applications of the S' — TF to powder data have been the
crystal structure solution of the microporous material RUB-18 (Vortmann et al.
1997), of the hydrous layer silicate kanemite, a precursor of the industrial ion
exchanger SKS-6 (Vortmann et al. 1999), and of the three large-pore zeolites
ITQ-21 (Corma et al. 2002), ITQ-22 (Corma et al. 2003) and ITQ-32. The crystal
structure of the last material was solved combining the origin-free modulus sum
function with the isomorphous replacement technique (Rius-Palleiro et al. 2005).
The S' — TF has also been applied successfully to the solution of the structure of
the dominant crystalline phase present in the hydrated high alumina cement i.e. the
phase determining the valuable cementing properties (Guirado et al. 1998) as well
as to the determination of the structure of the mineral aerinite used as blue pigment
in the middle ages (Rius et al. 2004). Both structures belong to hemihedral space
groups and may be regarded as tests examples to demonstrate the feasibility of
solving structures belonging to hemihedral space groups with the S' — TF (Rius
et al. 1999).
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A maximum entropy approach to structure solution

Christopher J. Gilmore, Kenneth Shankland and Wei Dong

14.1 Introduction

Direct methods of crystal structure analysis are one of the great success stories
of twentieth century science, with the enormous number of solved single-crystal
structures available today giving testament to their power. Traditional Direct
methods require data at atomic resolution coupled with a complete sampling of
reciprocal space. It therefore comes as no surprise that these methods perform
less well with powder diffraction data, where the inevitable reflection overlap
represents an information loss that can be critical.

In 1984, Bricogne proposed an alternative solution to the crystallographic phase
problem involving a combined multi-solution, maximum entropy, log-likelihood
estimation approach. Following its first practical implementation in 1990
(Bricogne and Gilmore 1990; Gilmore et al. 1990), it quickly became apparent that
the maximum entropy approach was particularly useful when the input structure
factors were few in number or poorly estimated. Accordingly, an extension of the
theory to cover the specific problems of powder diffraction data was a natural
progression (Bricogne 1991). Here, we outline the application of these ideas within
the context of the maximum entropy in a Crystallographic Environment (MICE)
computer program and use powder diffraction examples to illustrate specific
points. For more detailed reviews see Shankland (1994) and Gilmore (1996).

14.2 Data collection, range and overlap

For any Direct methods structure solution attempt, the best possible data
should be collected to high resolution, at least 1.5 A where possible. In the case
of molecular organic compounds, diffracted intensity is typically weak at higher
resolution and so it is advantageous to collect at low temperature and count for
longer at higher 20 in order to improve the signal-to-noise ratio (see Chapter 6).
Extraction of structure-factor intensities from the powder diffraction pattern is
typically achieved by either the Pawley or the Le Bail methods (see Chapter 8).
An important step here is the definition of an overlap set; when two or
more reflections lie so close together in 20 that their individual structure-factor
magnitudes cannot be reliably deconvoluted, they are often output as a
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single clumped intensity. Thus extracted structure factors are automatically split
into two distinct sets, overlapped and non-overlapped. The extent of overlap
encountered depends upon a number of factors such as instrumental resolution,
sample broadening, space group and unit cell size and shape. For example, in the
case of laboratory X-ray data collected on a sample of Mg3BN3 to —0.9 A
(P63/mmc, V = 174 A3), fewer than 3 per cent of the reflections were classified as
overlapped and the data thus approaches single-crystal quality. In contrast, with
laboratory X-ray data collected from a sample of the organic compound C4O2S4

(Pl\l a, V = 138 A3), approximately 60 per cent of the reflections were classified as
overlapped. Subsequent sections will show that these overlaps, which are often

Fig. 14.1. Wilson plots for Li6Zr2O7. The straight line is the least-squares fit of the data
points represented by the curve of V symbols, (a) Includes the non-overlapped and
overlapped reflections and gives an overall temperature factor of B = 3.6. (b) Includes only
the non-overlapped reflections and gives the physically meaningless value of B = —3.1.
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discarded or simply equipartitioned in preparation for a Direct methods structure
solution attempt, can be used more effectively, and the maximum entropy (ME)
method is particularly suited to this purpose.

The first step of most direct method procedures, including the ME method, is
the normalization of structure factors to E- or [/-magnitudes and this is typi-
cally achieved by using a standard Wilson plot. However, the dearth of reflec-
tions in a powder pattern compared to the single-crystal case means that the
quality of the Wilson plot is often poor, resulting in a meaningless negative
temperature factor. Nevertheless, the \E\ or | U\ values can still be used in a
successful structure solution without the need to enforce a positive temperature
factor. By including overlapped reflections in the normalization process, the
number of data points is increased, as is the sin 0/X range, and, as can be seen in
Fig. 14.1, the quality of the Wilson plot is improved significantly.

14.3 Starting set choices: defining the origin and enantioniorph

In the ME method, an origin is normally defined by assigning appropriate
phases to a set of strong reflections that constitute a legal origin. Where

Fig. 14.2. A centroid map for KA1P2O7 based on three origin defining reflections used as
constraints in entropy maximization. Note that the map includes these three reflections
as well as the extrapolates suitably weighted. Atomic positions are shown by crosses.
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appropriate, the enantiomorph is also defined. If this poses problems, then an
incomplete or deferred origin/enantiomorph definition can be made; the
building of a phasing tree will usually complete the process de facto. Ideally, the
reflections should all be non-overlapped in order to avoid any intensity ambi-
guities, but this is not essential. At this stage, the set of n phased reflections
constitutes the basis set {H} and these reflections, both their amplitudes and
phases, are used as constraints in an entropy maximization to generate a
maximum entropy map, #ME(x) using a highly damped exponential modelling
algorithm (Bricogne 1984; Bricogne and Gilmore 1990). The Fourier transform
of this map reproduces the constraints to within experimental error, but also
generates estimates of amplitudes and phases for reflections that were not
included in the original calculation, that is, reflections that lie in the non-basis
set {K} via a process of extrapolation. A typical map for KA1P2O7 generated
with just three origin-defining reflections is shown in Fig. 14.2.

14.4 Basis set expansion and the phasing tree

In order to improve the strength and reliability of maximum entropy extra-
polation, new reflections are introduced into the basis set {H} from {K}. For a
given basis set {H} containing n reflections, the second neighbourhood of {H}
consists of the A^ symmetry unique set of reflections distinct from the basis set,
k = h1±'Rgh2 for h1,h2e {H}, where 'Rg is the transpose of the rotation matrix
for the space group. Reflection k can also be defined via a second writing of the
form k = h3±'Rgh4 for h3,h4 e {H}. Reflections are then transferred from {K} to
{H} such that the quantity

is maximized. It can now be stated that origin-defining reflections are preferably
chosen in a similar fashion: one starts with a complete set of strong reflections
and eliminates them stepwise using the sum in eqn (14.1) as the measure of
strength.

Of course, reflections cannot be introduced into the basis set without
assigning them phases. To do this, centric reflections may be assigned each of
the two possible phase choices, for example, 0, TT or ivr/2, while acentric
reflections are assigned ivr/4, ±3-7r/4, that is, the quadrant is fixed. A node is
created for every possible phase combination; introducing «c centric reflections
creates 2"° new nodes each with distinct basis sets, with «a acentric reflections
giving 4"a nodes. The nodes comprise a phasing tree; the root node, on the first
level, is defined by the origin-fixing reflections, and the second level is defined by
those reflections for which phase choices have been made by phase permutation.
Subsequent levels are built by further phase permutation.
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14.5 Log-likelihood gain

Permuting six centric and six acentric phases in a given level generates
2 6 -4 6 = 262144 nodes, and further reflections may need to be permuted. To
contain the combinatorial explosion that can arise from this process, the
phasing tree needs to be pruned and nodes that contain incorrect phase choices
removed from the calculation. Entropy cannot do this (see, for example,
Gilmore 1996 and Table 14.1). More appropriate is a calculation of the prob-
ability that the distribution of observed structure factors in the non-basis set
( I UK °bs) nas arisen from the phase choices made in a particular basis set. This is
conveniently evaluated via an appropriate likelihood function (Bricogne 1984,
1991, 1997 a).

For a general expression for the likelihood function, let a given overlap
comprise^,-, i=\,m observed intensities, |C/h

 obs, and/-,-, z= 1, m the calculated
intensities produced as a result of extrapolation from a maximum entropy
optimization, |C/^E|. A single, non-overlapped reflection is treated by simply
setting m=\. For each overlap or single reflection, define:

and

where/? is the reflection multiplicity and £ is a refinable parameter related to the
unit cell contents via £ « 1/yV, where there are TV non-hydrogen atoms, assumed

Table 14.1 LLGs for Li6Zr2O7. Entropy is a poor figure of merit, but the LLG
performs well when overlaps are included, with node 135 having its entire basis set phases
correct

Node number

135
109
97
99

Entropy

-2.03
-1.75
-2.90
-1.87

LLG excluding overlaps

7.10
5.93
7.51
4.89

LLG including

15.11
12.78
12.51
11.28

overlaps

Let



where o-Fi is a confluent hypergeometric function (Abramowitz and Stegun
1970). The log likelihood, LH, is written:

Clearly, the higher the value of LLG, the more closely the process of entropy
maximization has predicted the pattern of observed intensities and hence the
more likely it is that our phase choices are correct. The refinement of £ is carried
out by maximization of LLG.

The LLG can be computed with or without the inclusion of overlapped
reflections. The inclusion of overlapped data in the LLG calculation is the
preferred option, as it usually has a marked effect upon the rank order of nodes.
For example, consider four nodes obtained from the second level of phasing for
the compound lithium zirconate (LigZ^O?) which has space group C2/c, 148
non-overlapping reflections, and 109 overlapping reflections in 47 groups.
Table 14.1 shows that node 135 generates a centroid map corresponding to the
correct solution and it is identified by the highest LLG only when the over-
lapped data is included (Tremayne 1995).

In principle, those 8-16 nodes which have the highest LLGs are selected from
a given level of the phasing tree for subsequent enlargement. However, except
for the simplest cases, selecting nodes simply on the criterion of maximum LLG
is unreliable since we have no estimates of their variances. LLGs need to be
analysed with more care, and the following algorithm has proved successful
(Gilmore et al. 1997).

First, tests of significance are used (Shankland et al. 1993; Bricogne 1993,
1997ft) in which the LLGs are analysed for phase indications using the Student
/-test. The simplest example involves the detection of the main effect associated
with the sign of a single centric phase. The LLG average, /j,+, and its associated
variance V+ is computed for all those nodes in a given level of the phasing tree

The log-likelihood gain (LLG) is then:

For the null hypothesis, LH0, we set r, and hence z, equal to 0 so that:
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equal, in the unit cell. Define:
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in which the sign of this permuted phase under test is positive. The calculation
can then repeated for those nodes in which the sign is negative, thus giving the
corresponding /^~ , and variance V~. The /-test statistic is:

and this is used with the standard, two-tailed tables of significance.
The use of the /-test enables a sign choice to be derived with an associated

significance level, s. The calculation is repeated for all the single phase indica-
tions, and is then extended to combinations of two and three phases where
appropriate.

A simple example involves the solution of the structure of Mg3BN3

(Shankland et al. 1993). The data consisted of 63 non-overlapped reflections
and two sets of overlapped reflections, with an effective resolution of 0.9 A. The
origin node was denned by assigning a phase of 0 to the 1 0 7 and the basis
set was expanded by permuting the 1 0 12, 2 0 12, 3 -1 1, 3 -1 4, 3 1 5, 3 1 6 and
317 reflections. LLGs were calculated for the 128 nodes generated and analysed
for significant phase indications (Table 14.2).

In general, only phase interactions with associated significance levels <0.02
are used in the analysis, but this is often relaxed to 0.05 - 0.10 if few significant
interactions can be found at a particular level or error correcting codes are being
used. Each of the m phase relationships with associated significance levels above
the preset significance limit is given an associated weight:

where /! and 70 are Bessel functions and sf is the significance level of the z'th
relationship from the /-test. Each node n is now given an overall score, sn:

Table 14.2 t-test results for Mg3BN3. The 1, 2 and 3 phase interactions with a
significance level <0.02 are listed

Refl. 1

3-17
3 -1 1
1 0 12
3 1 1

Refl. 2 Refl. 3

3-14 1 0 12
2 0 12

Sign Type

+ Main effect
— 3 -phase
+ 2-phase
— Main effect

Significance

0.98 x 10 ~19

0.43 x 10 ~ 3

0.67 x 10 ~ 3

0.15 x 10"1
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The summation in eqn (14.11) spans only those phase relationships where there
is agreement between the basis set phases and the /-test.

For Mg3BN3, eight nodes were retained on the basis of these relationships
and the map from the node with the highest score revealed the position of all the
atoms as shown in Fig. 14.3.

A question that arises naturally is: 'Why not take strongly extrapolated
reflections and put them into the basis set with their observed magnitudes and
extrapolated phases?' This procedure usually ends with the solution trapped in a
local entropy maximum in phase space (Gilmore et al. 1990). To see this in the
context of Mg3BN3, the origin was again denned using the 1 0 7 . After a
constrained entropy maximization, the inverse Fourier transform yielded
extrapolated structure factors. For those reflections where \U^E\ > 0.5|C/h °

bs

the phase angles predicted by extrapolation were assigned to the observed
U magnitudes, and the process of entropy maximization repeated. Successive
cycles of this procedure were performed until all the 54 reflections used were
phased. The results are summarized in Table 14.3.

A Fourier map based on the 54 phased reflections is incorrect, with the
majority of the density placed on a single nitrogen atom site. It is clear that the
algorithm never recovers from the early acceptance of incorrect phases. In
contrast, the MICE node with the highest score had correct phases for the seven
permuted basis set reflections and 36 of the 42 extrapolated reflections with
|[/£1E||[/h|

obs > 0.001.

Fig. 14.3. The best centroid map for Mg3BN3. The atoms labelled 1 and 2 are
Magnesiums; 3 and 4 are Nitrogens; 5 is Boron.

Table 14.3 The results of incorporating ME extra-
polated phases into the basis set for Mg3BN3

Cycle

1
2
3
4

No. of reflections
phased

4
8

26
54

No.

2
3

12
27

of correct phases
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For other successes of this part of the ME formalism with powder data, see
for example, Gilmore et al. (1991), Tremayne et al. (I992a, b), and Gilmore et al.
(1999).

14.6 Centroid maps

The maps which are most useful in an ME-phasing environment are centroid
maps (Bricogne and Gilmore 1990; Bricogne 1991; Gilmore et al. 1991) in which
the overlapped reflections are included. These have the following coefficients:

1. Basis set reflections are included with unit weights, the observed
U magnitudes and phases from the relevant node on the tree.

2. Non-basis set reflections incorporate the observed U magnitudes, phase
angles resulting from the ME extrapolation process, and Sim-type weights
wt (Sim 1959) computed via:

All the maps in this chapter are of this type.

14.7 Fragments and partial structures

It is often the case that some fragment of the structure under investigation is
already known, perhaps from a Patterson map or from a partial structure
detected via the ME formalism (Fig. 14.4). In such cases, three U magnitudes
are considered: | C/h|

obs, | U^E , | C/J,rag . The constraints to be fitted in the entropy
maximization process incorporate the fragment information and the whole

Fig. 14.4. The contribution of a partial structure to an observed structure factor.
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Table 14.4 Light
ME formalism

Peak number
in map

1
2
3
4
5
6
8
11

atom location

Atom

Zr
0
O
O
Li
0
Li
Li

in Li6Zr2O7 using the

Distance from
position (A)

0.12
0.31
0.91
0.54
0.48
0.45
0.51
0.22

refined

ME process works as before, with the fragment contribution subtracted
from the observed U magnitude, and phase information from the fragment
incorporated.

In the case of the LigZ^O? structure mentioned earlier, the Zr position was
obtained from node 135. To find the rest of the structure, the data was renor-
malized so as to incorporate the Zr atom and a new phasing tree generated with
the permutation of five centric reflections to generate another 32 nodes. All
nodes generated centroid maps that revealed the entire structure, with the node
exhibiting the highest score giving the best approximation of the final refined
structure (Table 14.4).

14.8 Using likelihood to partition overlapped reflections

14.8.1 The overlap problem defined in terms of hyperphases and pseudophases

In the above cases, no attempt has been made to predict the relative magnitudes
of the reflections under a given overlap. In fact the combined ME/LLG method
can predict these splittings in favourable cases (Dong and Gilmore 1998). Let
a given overlap contain wa acentric and mc centric reflections. The net intensity,
7, is:

where PJ is the multiplicity of reflection j, A and B are the real and imaginary
parts of an acentric structure factor, and C the structure factor component for
centric reflections. Multiplicities are readily derived from point group sym-
metry, so that the problem is one of determining the A, B and C coefficients in
eqn (14.13). It is profitable to rephrase this problem in terms of hyperphases.
To do this we define the overlap as a vector F in an «-dimensional space R"

242
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(Bricogne 1991) as:

The angles tf}1 and tf)2  pseudophases; once they are known the
individual intensities of the reflections are determined. It is then necessary to
derive the associated phase angles to fully characterize the overlap, and this is
the process of determining hyperphases. The whole process is now denned
exclusively in terms of angles.

14.8.2 Duncan's procedure for multiple significance tests

In order to determine the necessary pseudophases, a sequence of /-tests is car-
ried out to decide which ratios of intensities lying under an overlap are the most
likely. However, a simple application of such methods leads to a serious over-
estimate of the associated level of significance and hence introduces damaging
systematic errors. Consider an overlap in which there are three reflections of
intensity 71; 72 and 73. To estimate these, various partitions of the net intensity
are tried, and each permutation has associated with it some figure of merit

where n = 2mli + mc, is the number of degrees of freedom, and m = m^ + mc is the
number of reflection moduli under the overlap. F can be visualized as a
hypersphere in Rn and we wish to parameterize it. A total of m — 1 splitting
angles, ^jj=\tm-\, 0 < i/j < vr/2, called pseudophases define a point on the
positive unit hypersphere. This is best seen via an example: consider an overlap
of net intensity 71/2 comprising two acentric and one centric reflection. The
radius of the hypersphere is R= ||F|| =/1/2. Denning RI, R2 and ^3 as the
individual intensities of these three reflections, then:

are the two
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(in this case the LLG), and a measure of its variance. A total of nineteen /-tests
are performed on various combinations of LLGs and their associated standard
deviations, that is (Duncan 1955):

1. Six decisions of the form: LLGi is significantly less than LLG2; LLG2 is
significantly less than LLG3 etc. In the usual shorthand we write these six
choices as (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) and (3, 2, 1).

2. Six decisions of the form: LLG: is significantly less than LLG2 and LLG3,
but LLG2 and LLG3 are not significantly different from each other. This is
written (1,2,3), and the other possible choices are (2, 1,3), (3, 1,2), (1,3, 2),
(1,2, 3) and (2,3, 1).

3. Six decisions of the form LLG: is significantly less than LLG3, but LLG:

and LLG2 do not differ significantly and LLG2 and LLG3 do not differ
significantly either. This is written as (1, 2, 3), with the remaining decisions
written as (1,3, 2), (2, 1, 3), (2, 3, 1), (3,~2) and (3,2, 1).

4. One decision of the form (1, 2, 3), that is, there are no significant differences
among the intensities.

While computationally these tests are trivial, a situation arises that if several
/-tests are performed at, say, a 5 per cent significance level, the probability that
one of these gives an erroneous indication is greater than 0.05 (see, for example,
Cochran and Cox 1957; Duncan 1955). If the /-tests are independent, this
probability of error is surprisingly large: 0.23 for 5 tests, 0.40 for 10 and 0.64 for
20 tests. In order to protect against such errors, Duncan (1955) has provided a
procedure in which the /-test tables in the form of studentized ranges (Pearson
and Hartley 1966) are modified to include variable protection levels that are
adjusted against incorrect indications of significance.

The LLGs are ranked in order, and an initial analysis of variance carried out.
A standard error of the mean LLG, terror, is computed along with the number
of degrees of freedom, n. Duncan's tables are then used: the number of degrees
of freedom and the significance level define the necessary entries. A studentized
range statistic is computed:

where Tt and 7} are two means to be compared. A critical value for each degree
of freedom and the range r can be found from the tables prepared by Duncan.
The hypothesis of equality of the two means will be rejected if qr is greater than
the specified level. These are the significant studentized ranges. Each of these is
multiplied by the standard error to form what Duncan calls the shortest sig-
nificant ranges. Each difference is then tested in the order: largest minus smal-
lest, largest minus second smallest, . . . , second largest minus smallest, second
largest minus second smallest, . . . , finishing with second smallest minus
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smallest. Each difference is significant only if it exceeds the corresponding
shortest significance range. There is an exception to this rule: no difference is
significant if the two LLGs concerned are both contained in a subset (which can
be the complete set) of the mean LLG which has a non-significant range.

14.8.3 The determination of pseudophases using the maximum
entropy-likelihood method and Duncan's procedure

The ME method needs only minor modifications to use this procedure. Fol-
lowing origin definition, a set of reflections, both overlapped and
non-overlapped, is selected via the standard algorithm of optimum second
neighbourhood extension. The incorporation of overlaps is carried out in the
same way as for non-overlaps except that for the former, all the reflections in a
given set must be considered simultaneously. If one reflection is selected from an
overlap set for the basis set, then all the reflections under the same overlap are
included. Pseudophases arising from overlapped intensities are constrained to
lie between 0 and 7r/2 in steps of vr/10 (18°) that is, working as 18°, 36°, 54° and
72°. This appears to give the finest grid to which this formalism is sensitive. Zero
and ninety degrees are not used since these correspond to a situation where one
intensity is zero, and this introduces computational difficulties as well as being
unlikely when the overlap is large. Conventional phases are permuted in the
usual way. Each choice of conventional and pseudophase defines a node on the
second level of the phasing tree, and each node is subjected to constrained
entropy maximization. At convergence, each node has associated with it an
LLG computed using the generalized form of likelihood when powder overlaps
are present.

The likelihood estimates are then analysed. When pseudophase permutation
is involved, the LLG analysis is divided into two stages: pseudophases
and conventional phases. Since a four-point sampling method is used for the
splitting angles instead of the coarse binary sampling for conventional phases,
an F-test is first invoked to test if pseudophase permutations have a statistical
effect on the LLG at a given significance level. When significant differences
do exist, the LLG means for all permuted pseudophase values are compared
using Duncan's procedure at either the 1 per cent or 5 per cent level. If no
significant differences are found, then the LLG is not sensitive to the relevant
pseudophases. If this is the case then the overlaps can be deconvoluted
by multiplicity-weighted, equipartitioning (pseudophase = vr/4). This is sur-
prisingly frequent, and may possibly arise from our use of likelihood in its
simplest diagonal approximation (Bricogne and Gilmore 1990). Other, more
sophisticated likelihood formalisms (Bricogne 1993, 1997a) may prove more
sensitive.

If the significance test indicates suitable pseudophases, then the conventional
phase angles are extracted by the methods described above. If necessary, another
cycle of tree-building and entropy maximization can then be carried out.
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An example: SAPO-40. SAPO-40 [(Si, A1,P)64O128-4TPAOH] is a large
pore molecular sieve. Its structure has been reported by Dumont et al. (1993)
and McCusker and Baerlocher (1995). The data were collected at a synchrotron
source, and only 18 per cent of the reflections present could be treated as being
'independent' in the intensity extraction stage, the remainder falling into
numerous clumps of overlapped reflections. The space group Pmmn was used
with cell parameters 0 = 21.9410, b= 13.6912, c = 7.1244A. As McCusker and
Baerlocher have shown, this is acceptable until atom-type designation is
imposed for P and Al; this causes a doubling of the c-axis and the space group
becomes Pccn. However, as a starting point for Rietveld refinement, the smaller
cell is sufficient. In general, the LLGs were not sensitive to overlap partitioning,
but some phasing sequences were successful, and the following demonstration
of the feasibility of magnitude partitioning is typical:

1. An origin was defined in the usual way to generate the root node. Eight non-
overlapped reflections were given permuted phases, generating a 256 node
second level. As this was simply a feasibility test, the node corresponding to
a zero degree phase error (with respect to the known phases from the known
crystal structure) was chosen at this point for subsequent tree building.

2. Fourteen reflections were given permuted phases, and the strongest overlap
involving the (240) and (601) reflections was given true and pseudophase
permutation. Since this would generate 2 1 6 x4 = 65,536 nodes in a full
factorial design, a Nordstrom-Robinson code was used as a source of phase

Fig. 14.5. The best centroid map for SAPO-40 projected down the c-axis. The pore is
clearly visible. The crosses numbered 15-21 are the tetrapropylammonium hydroxide
ions in the 12-ring channel.
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permutation (Bricogne 1993, 1997ft; Gilmore and Bricogne 1997; Gilmore
et al. 1999). This procedure is discussed further in the next section. The use
of the Nordstrom-Robinson code plus pseudophase permutation generated
only 1024 nodes.

3. The Duncan procedure operating at a 5 per cent confidence level indicated a
pseudophase angle of 72° for the overlap; a value of 54° was not
significantly different although it had a lower average LLG. The mean of
these indications, 63°, is in excellent agreement with the true value of 61°
established from the refined structure. Analysis at the 1 per cent level
instead of 5 per cent indicated no significant differences. The best map
shown in projection down the z-axis with the atomic coordinates indicated
as crosses is shown in Fig. 14.5. It is of high quality, with most of the density
in correct places and the pore clearly visible.

14.9 The maximum entropy method and the need for experimental designs

There is an obvious computational problem associated with the ME formalism.
If n nodes are retained at a given level, and there are m degrees of freedom for
each of the p reflections that are about to be phase permuted, then any full
factorial permutation will generate n • nf phase sets, all of which need to be
subjected to constrained entropy maximization. The problem is significantly
worsened if pseudophases are used and, magnitude of the computational pro-
blem aside, it can be difficult to interpret the results due to the sheer number of
phase sets generated. A highly effective way of reducing the number of sets that
need to be generated in order to cover the same phase space is to use suitable
error-correcting codes (ECCs) as a source of experimental design (Bricogne
1993, 1997ft; Gilmore et al. 1999). ECCs are a part of digital communication, a
subject on which there is a huge volume of literature. A discussion of ECCs and
the origin of their properties lies outside the scope of this chapter, but a good
introduction comes from Hill (1993), while the classic book is by MacWilliams
and Sloane (1977). Outside the world of communications, the relationship
between some ECCs, experimental designs and combinatorics is well docu-
mented (see, for example, Anderson 1989). Furthermore, there is a link between
certain ECCs and experimental designs (Bricogne 1993, 1997ft) which can be
used as an efficient source of phase permutation in ab initio phasing.

14.9.1 Error correcting codes and their use in MICE

Most ECCs are unsuitable for our purposes; useful ones contain a suitable
experimental design that balances both the main reflection phases and the
interactions between them, as well as covering the phase space with optimum
efficiency. Selecting suitable candidates is a non-trivial task, but those listed in
Table 14.5 have suitable properties and were first employed in the BUSTER
computer program (Bricogne 1993).
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Table 14.5 Properties of certain ECCs selected as a source of phase permutation. The
last column indicates the maximum number of incorrect phase indications guaranteed to
be present in one of the generated sets

Name of code

[8, 4, 4] Hadamard
[7, 4, 3] Hamming
[15, 11,3] Hamming
[16, 11, 4] Hadamard
[16,256,6] Nordstrom-Robinson
[15,256, 5] punctured Nordstrom-
Robinson
[24,12,8] Golay
[23, 12, 7] punctured Golay

Degrees
of freedom

8
7

15
16
16
15

24
23

No. sets
generated

16
16

2048
2048

256
256

4096
4096

No. sets
generated in
full factorial

256
128

32768
65536
65536
32768

16777216
8388608

Maximum no.
wrong
in best

2
1
1
2
4
3

4
3

phases
set

To use codes for phase permutation is straightforward. For centric phases the
binary digit '0' represents one possible choice, and T the alternative, e.g. for a
phase restricted to 0 or TT, 0 represents a phase angle of 0 and 1 represents an
angle of TT. In the acentric situation two bits are used to assign the quadrant of
the phase; one bit describes the sign of the real part of the phase and the second
the imaginary part, that is, 0, 0 = vr/4, 1,0 = 37T/4, 1,1 = 57T/4 and 0, 1 = 77T/4.

Fig. 14.6. The NU-3 structure projected down the c-axis for node 3349.
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The [24,12,8] Golay code and the NU-3 powder dataset. McCusker and
Baerlocher have reported two forms of the zeolite NU-3 (McCusker 1993;
Baerlocher and McCusker 1994) which has the LEV-type framework. In one
case 1-aminodiamantane (ADAM) was used in the synthesis and in the other N-
methylquinuclidinium iodide (QUIN). We have used the ADAM form. The
space group is R3m with a= 13.2251 and c = 22.2916A. There are 373 reflec-
tions in total of which 199 are in 80 overlap sets with up to seven under a single
overlap envelope; the maximum resolution is 1.1 A. The origin was denned by
the 1 0 7 reflection with a U magnitude of 0.345. Twenty-four reflections were
given permuted phases using the [24,12,8] Golay code, generating 4096 nodes.
The resulting LLG analysis based on values that included the overlapped
reflections at the 5 per cent significance level produced a centroid map for the
top ranked solution that is shown in Fig. 14.6. The entire zeolite framework and
the envelope of the ADAM guest molecule are clearly visible.

14.10 Conclusions and other possibilities

The power of the ME method in solving structures from powder diffraction
data has been demonstrated. Some future developments that are currently
under investigation are:

1. Phase refinement. Errors naturally accumulate with ECCs when building
phasing trees, and phase refinement is therefore a necessary development. In
general, the tangent formula is unstable with much of the data under
investigation, because it is sparse or of low resolution. The Bayesian method
based on likelihood optimization that we have sometimes employed (Bricogne
and Gilmore 1990; Gilmore et al. 1990) can be useful, but is sometimes unstable
or unable to refine phases very far from their initial values.

2. Better use of overlaps. In the powder diffraction case, ECCs can be used
as a source of spherical designs for hyperphase permutation (Bricogne 1991,
1997ft). This means that both phases and amplitudes of overlapped reflections
can be permuted using the appropriate codes, and both can be recovered with
suitable analysis of the associated LLGs.

3. Fragment searching. There has been a great deal of activity in using
structural fragments translated and rotated through the unit cell to solve
organic crystal structures from powder data (see, for example, Harris and
Tremayne 1996; Kariuki et al. 1997; Shankland et al. 1997). These methods use
various search procedures (e.g. genetic algorithms, simulated annealing) to
carry out the search. Codes provide an efficient way of defining the initial search
parameters (Bricogne 1997ft) and could potentially be used to increase the
power of these methods by providing more efficient starting points. We have
used codes to define molecular envelopes as a starting point in modelling studies
of this type with considerable success (Tremayne et al. 1997).
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4. Envelope determination. The ME method is often very effective with low
resolution data (see, for example, Gilmore et al. 1996) and can produce maps
that effectively define a molecular envelope. This can be used as a starting point
for modelling calculations, and can be used more rigorously by incorporating
the envelope as a penalty function in an optimization procedure (Brenner et al.
1997).

5. Codes. The literature on coding theory is enormous. Other codes, not
necessarily binary, may well exist with excellent design and covering properties
that could extend the scope of ECCs.
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Global optimization strategies

Kenneth Shankland and William I. F. David

15.1 Introduction

Global optimization methods that involve the assessment of multiple trial
crystal structures in real space offer a powerful method of structure solution
from powder diffraction data. High quality atomic-resolution density maps are
difficult to obtain for even moderately complex structures using powder dif-
fraction data because of Bragg peak overlap. This makes the direct location of
atomic positions from density maps a far more difficult exercise for powder data
than it is for traditional single-crystal Direct methods and Patterson techniques.
With global optimization methods, this process is circumvented because the
task is not to identify atomic density from first principles but to match atomic
density with atomic positions in a trial crystal structure.

One large class of important materials that lends itself to this approach is that
of molecular organic compounds. These materials generally possess low sym-
metry and have relatively large unit cells and no particularly strongly scattering
atoms. Over the past few years, a growing number of crystal structures of
organic, and particularly pharmaceutical, compounds have been solved using
these real-space techniques. The principal advantage of the real-space global
optimization approach can be understood in terms of basic information theory.
The information content in a powder diffraction pattern is small compared with
a single-crystal measurement and often too small compared with the informa-
tion required to describe the crystal structure itself. Real-space global optim-
ization strategies that involve the incorporation of sufficient additional chemical
knowledge can shift the information balance from a deficit to a surplus. This
chemical knowledge can take a number of forms (Chapter 17). One of the most
convenient and easiest to exploit is the known molecular topology, or poly-
hedral connectivity and coordination of the system under study.

In the direct-space approach, adjustments are made in real space to a trial
model of the crystal structure in order to maximize the agreement between the
calculated and the measured diffraction data.1 As such, these real space

1 This assumes that the unit cell and space group have already been determined; this is not always
a straightforward task (see Chapters 7 and 8).
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approaches have many of the hallmarks of traditional structure refinement.
Conventional refinement, however, requires a good approximate starting model
and thus is not usually regarded as a structure solution technique. What, one
might then ask, differentiates global optimization structure solution from
conventional structure refinement? This chapter shows that these trial-and-error
methods may indeed be viewed as global Rietveld refinements, and outlines the
significant number of variants on this theme that have been developed in recent
years.

15.2 Background

Given a known unit cell, space group, and a set of atomic coordinates with
corresponding atom types, the structure factors for a trial crystal structure may
be calculated according to the standard formula:

The agreement between the calculated structure factors and a set of 'single-
crystal' structure factors, or structure factors of non-overlapped reflections
extracted from a powder diffraction pattern may be calculated using any of a
number of Bragg .R-factors such as the \F \ .R-factor:

Although some early implementations of global optimization strategies used
only non-overlapped reflections, most current approaches now also include
overlapped reflections. This is most conventionally achieved using an agreement
factor based upon the full diffraction profile. Alternatively (and equivalently) an
agreement factor based upon the correlated integrated intensities extracted
from the full profile may also be used (Section 15.6).

The chances of randomly placing all of the atoms in a crystal structure in their
correct positions are vanishingly small, even if some assumptions are made
about the way in which the atoms are related to one another (Section 15.4).
Accordingly, the trial structure must be adjusted in some manner in order to
explore the function that describes the agreement between the calculated and
measured diffraction data. For the purposes of this discussion, this function can
be thought of in terms of an TV-dimensional hypersurface, where TV is the
number of structural parameters that must be varied to describe all the possible
trial structures that make chemical sense. Structure solution is then equi-
valent to searching for, and locating the position of, the minimum value of the
TV-dimensional hypersurface. If the optimization procedure involves matching



254 GLOBAL OPTIMIZATION STRATEGIES

the full diffraction pattern, then the surface to be searched would be either
the Rietveld \ or a profile .R-factor. These surfaces exhibit multiple minima
(Fig. 15.1) as a function of the TV variable parameters.

These minima may be divided into two sets: (a) the global minimum that
corresponds to the fully determined crystal structure and (b) local minima that
correspond to incorrectly determined crystal structures. In a structure refine-
ment, it is generally assumed that an initial model has been obtained from
a similar structure in a database, or from a Patterson or Direct methods
structure solution. Furthermore, for a successful refinement, it must also be the
case that the initial model is sufficiently close to the true crystal structure in
order that the current function value lies within the radius of convergence of the
TV-dimensional well that surrounds the global minimum. If these conditions
hold, then conventional least-squares methods of refinement are able to
locate quickly the precise global minimum. However in the absence of a
well-positioned starting model (as is the case with a random trial structure),
standard least-squares refinement simply locates the closest local minimum and
terminates at that point. This is a fruitless strategy for structure determination.
Global optimization algorithms on the other hand, possess the ability to escape

Fig. 15.1. A two-dimensional section through the 12-dimensional x hypersurface of
famotidine form B. The flat regions of the surface correspond to \ values of
approximately 1000, while the deepest minima correspond to x2 values of approxi-
mately 200.
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from local minima and are thus able, in principle, to locate the global minimum
from any random starting point. As such, they have great significance for
structure determination and are discussed in more detail in Section 15.5.

Figure 15.2 shows a flow chart of a generic global optimization strategy; each
of the heavily outlined blocks is described in the following pages.

There is a certain amount of confusing terminology employed in some
powder diffraction papers regarding global optimization. For example, a dis-
tinction might be drawn between a 'Monte Carlo' method and simulated
annealing. To avoid confusion, we state that 'Monte Carlo' implies a method
that involves some element of random sampling, while noting that its use in the
simulation of crystal structures almost always implies use of importance sam-
pling. Note that the term 'Reverse Monte Carlo' is also employed by some

Fig. 15.2. A generic flow chart for implementing a global optimization approach to
crystal structure solution. The heavily outlined blocks represent the key components
discussed in the chapter.
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authors to describe a particular Monte Carlo computational methodology
developed for the solution of disordered crystal structures and liquid structures
(see Keen 1998, for a concise description of RMC). Furthermore, we use the
term 'global optimization' throughout this chapter to represent both search
and optimization algorithms, bearing in mind that 'global search' and 'global
optimization' are normally used interchangeably in the literature (Hazelrigg
1996).

15.3 Describing a crystal structure

The most straightforward description of a crystal structure consists of specifying
TV independent atoms located with fractional coordinates (x, y, z) in the asym-
metric unit of a unit cell. With such a description, any configuration of atoms
can be generated, whether physically reasonable or otherwise, and it is then the
task of the cost function to discriminate between reasonable and unreasonable
solutions. This cost function can gradually impose chemical sense through
evaluation of energy terms such as those derived from bond valence rules
(Pannetier et al. 1990; Bush et al. 1995), calculation of the level of agreement
with a powder diffraction pattern (Solovyov and Kirik 1993), or some com-
bination thereof (Putz et al. 1999). Geometry refinement of tentative atomic
arrangements is possible through distance-least-squares refinement (Baerlocher
et al. 1976; Deem and Newsam 1989). This description is not confined to
ordered crystal structures but has also found applicability in modelling dis-
ordered structures, such as vitreous silica (Keen 1997). Intuitively, the TV inde-
pendent atom formulation seems best suited to the solution of inorganic crystal
structures, where the extended connectivity of the crystal structure is generally
unknown at the outset. In cases where the molecular connectivity of a com-
pound under study is known, it is possible to transform these 3 • TV parameters
into a smaller set by describing the molecule as a series of connected atoms. One
simple way of doing this is to describe the molecule in terms of bond lengths,
bond angles and torsion angles. For example, an internal coordinate description
of a famotidine molecule (Fig. 15.3) is given in Table 15.1.

Given that the covalent bond lengths and bond angles for famotidine can be
estimated with sufficient accuracy,2 one may construct a three-dimensional
molecular description in which the only unknowns are the values of six torsion
angles. By inserting trial torsion angle values into these points in this Z-matrix,
different molecular conformations can be generated. Recognizing that the
position and orientation of a famotidine molecule within the asymmetric unit
can be described by a single x,y,z position and three Euler angles, each trial

2 Values for covalent bond lengths and bond angles may be obtained from published tables, or by
analysing polymorphs or other related crystal structures in the Cambridge Structural Database.



Table 15.1 An internal coordinate description of the famotidine molecule shown in
Fig. 15.3

#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Atom Length

C
H
H
C
C
H
H
N
N
H
H
S
0
0
N
H
H
S
C
C
H
H
C
S
C
N
H
N
C
N
N
H
H
H
H

0.000
0.900
0.900
1.540
1.510
0.900
0.900
1.310
1.310
0.900
0.900
1.610
1.440
1.440
1.630
0.900
0.900
1.810
1.830
1.490
0.900
0.900
1.357
1.726
1.756
1.317
0.900
1.356
1.335
1.330
1.330
0.900
0.900
0.900
0.900

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Angle

0.0
0.0

109.5
109.5
109.5
109.5
109.5
115.0
117.0
120.0
120.0
120.0
109.5
109.5
109.5
109.5
109.5
109.5
102.0
109.5
109.5
109.5
126.0
110.0
90.0
113.0
125.0
130.0
120.0
125.0
118.0
120.0
120.0
120.0
120.0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Torsion

0.0
0.0
0.0

120.0
0.0

120.0
240.0
180.0
180.0
0.0

180.0
180.0
180.0
120.0
240.0
60.0
180.0
120.0
180.0
180.0
120.0
240.0
180.0
180.0
0.0
0.0

180.0
180.0
0.0
0.0

180.0
0.0

180.0
0.0

180.0

0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

Bond
to

0
1
1
1
4
4
4
5
5
8
8
9
12
12
12
15
15
1
18
19
19
19
20
23
24
25
23
25
28
29
29
30
30
31
31

Angle
with

0
0
2
2
1
1
1
4
4
5
5
5
9
9
9
12
12
4
1
18
18
18
19
20
23
24
20
26
25
28
28
29
29
29
29

Torsion
with

0
0
0
3
3
5
5
1
8
9
9
4
5
13
13
13
13
3
4
1
20
20
18
19
20
23
26
20
26
25
25
28
28
28
28

The six rows highlighted in bold correspond to the torsion angles flagged for optimization. The
description, in Z-matrix format, is read as follows, taking the first highlighted line as an example:
atom five is bonded to atom four at a distance of 1.51 A; it makes a bond angle of 109.5° with atoms
four and one, and a torsion angle of 0° with atoms four, one and three. The zeros and ones following
each distance or angle entry denote whether or not the corresponding entry is to be optimized.
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Fig. 15.3. The molecular structure of famotidine, with the atom numbering scheme
corresponding to the scheme used in Table 15.1.

crystal configuration can now be described in terms of only 12 independent
variables3 rather than the 105 needed for an individual atom description. All
solutions are restricted to this 12-dimensional sub-space of the 105-dimensional
atomic coordinate space such that only these 12 variables need be altered in
order to optimize the fit to the measured diffraction data and thus solve the
crystal structure. Note that those fragment rotations that have little impact
upon the overall diffraction pattern, for example the rotation of a methyl group,
are typically ignored. The transformations required to convert a stereochemical
description of a molecule in Cartesian space into a trial crystal structure are
discussed in Chapter 16. This type of stereochemical description can accom-
modate variation of bond lengths or bond angles equally well, although sensible
bounds on the variable parameters are required (see Chapter 16). While torsion
angles are normally allowed to rotate in the range 0-360°, appropriate bounds
may be placed if required. For example, the rotation of a carboxylic acid group,
while properly described by a 0-360° rotation, can be approximated by 0-180°
rotation since the H-atom makes a negligible contribution to the overall scat-
tering of the group. Similarly, an amide group might be constrained to adopt a
trans planar configuration with ±10° latitude, based on observation of the
preferred configuration of this bond in known crystal structures.

A related approach (Favre-Nicolin and Cerny 2004) that may offer advan-
tages in terms of the efficiency with which the global minimum is located defines
molecules through a series of restraints rather than the more 'rigid' Z-matrix
approach just described.

15.4 Calculating the odds

Given the infinite number of trial crystal structures that may be randomly
generated for a particular structure solution problem, the probability of

3 If quaternion numbers are used to describe the orientation of the molecule then the number of
variables increases by one to 13, although the number of independent variables is still 12 (see Leach
1996).



For a 10-atom structure, p K 10 ~13, about a million times less likely than the
chances of winning the UK national lottery. In the same way that one is
guaranteed to win the lottery if one purchases all of the possible tickets, this type
of problem can be solved by a grid search in which the atoms are moved sys-
tematically around the x,y,z space of the asymmetric unit on a number of
discrete grid points, in such a way that all feasible atomic configurations are
explored. For example, one might choose to divide the asymmetric unit into a
l O x l O x 10 grid, giving 103 possible atomic locations for each atom and a total
(ignoring the possibility of atomic overlap) of 1030 atomic configurations. Grid
searches are therefore not to be recommended even in this crystallographically
simple case. For a 50-atom structure, p K 10~30 and the situation is even worse.

Building in the molecular topology as outlined in Section 15.3 improves the
odds of obtaining a correct crystal structure by many orders of magnitude. For
example, imagine that the 10-atom structure mentioned above is in fact the non-H
atom structure of napthalene; the only degrees of freedom for this problem are the
position and orientation of the rigid body within the unit cell. Working on the
assumption that the radius of convergence for the location of a molecule is of
order of 0.7 A, the probability of locating the correct molecular position is then
(0.7A)3/200A3?al/600. Given that determining the molecular orientation is a
problem of similar complexity, then solving the 10-atom problem reduces to a
«106 point grid search. Suddenly, the grid search has become tractable and rigid
structures may be solved using this approach (Section 15.5). However, noting that
each additional degree of freedom (typically a torsion angle) increases the number
of trial structures by a power of at least 10 (the figure of 10 assumes sampling the
torsion angle in coarse steps of 36°) then a 10 torsion angle problem requires the
evaluation of an enormous number (1016) of structures. Even if 10000 structures
could be calculated and tested every second, the grid search process would take
around 30000 years. How then, can more sophisticated global optimization
algorithms render these calculations feasible? The broad answer to this question is
that, although algorithms such as simulated annealing can in principle visit every
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obtaining the correct crystal structure by chance is vanishingly small. However,
it is an interesting exercise to calculate exactly how small this probability is,
given certain assumptions. Consider firstly a method of structure solution that
involves placing atoms at random into a unit cell. Taking the case of an organic
molecule, ignoring the hydrogen atoms and treating all the remaining atoms as
equal scatterers, then the structure might be said to be solved if all atoms are
positioned within approximately r = 0.4 A of a correct atomic position. Given
that each atom in an organic structure occupies a volume of around 20 A3 and
enforcing the condition that atoms are not permitted to be closer than s « 1.5 A
of one another, then the probability of obtaining the correct structure is of order
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trial structure, they never do. Instead, they may be regarded as 'a random walk
among the good solutions'. Taking this analogy further, a one in 1016 probability
approximates to finding the highest square metre on the surface of the Earth.
While a grid search laboriously tests each point on the earth's surface in turn, an
algorithm such as simulated annealing is predisposed to searching the mountain
ranges, with a bias always for going uphill.

By way of confirming the empirical orders of magnitude discussed above, the
nature of the %2 hypersurface associated with the structure solution of famo-
tidine form B was investigated. This problem is discussed fully in Section 15.8
but for the moment, it suffices to say that famotidine has six internal degrees of
freedom. Using the simple arguments outlined above, the chances of randomly
finding the correct trial structure should be around one in 1012. To check these
probabilities, 105 trial structures were generated and their calculated powder
diffraction patterns compared with the observed data. The resultant decaying
exponential %2 distribution is shown on a logarithmic scale in Fig. 15.4.

Fig. 15.4. The log-log frequency distributions of simplex-optimized and randomly
chosen chi-squared values for famotidine. Nearly all the x2 values of the 100 000 random
structures are located between 900 and 1000. The fit to the rapidly decaying exponential
distribution associated with the random structures indicates that low x2 values are
extremely unlikely. The 20 000 simplex-optimized structures, obtained from random start
positions, follow a log-normal distribution. These structures and their associated x2

values represent the distribution of semi-global minima. A few structures (c. 14) have x2

values that are anomalously low and deviate significantly from the log-normal
distribution. All of these structures have some of the characteristics of the correct
structure. Only two simplex minimizations, however, give the correct structure,
indicating that it is very difficult to obtain the global minimum in among a complex
topology of multiple local minima.
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Unsurprisingly, the correct solution (%2 ~ 124) was not among any of the trial
structures, with the majority of solutions corresponding to symmetry equivalent
molecules lying on top of one another. The distribution falls off exponentially
and based upon this, one may calculate that the chances of obtaining the correct
structure are ~1 in 1013, a figure in good agreement with the empirical estimates
made earlier. Further insight into the nature of the structure solution x
hypersurface may be obtained by plotting sections of this surface. Figure 15.1 is
in fact a plot of the two-dimensional centre-of-mass x-z section of the 12-
dimensional %2 space taken at the correct solution point. There are two sets of
four identical minima corresponding to four equivalent correct and four
incorrect solutions belonging to the four different asymmetric units in the unit
cell. The incorrect solutions are related to the correct solutions by a pseudo-
symmetry element, which is often found to occur in global optimization
methods. The minima are deep, with the plateaux between the correct solutions
corresponding to some of the very worst fits with x2^1000. The proximity of
such poor fits to the correct solution highlights the difficulties in locating the
correct solution; all but two of the twelve parameters can be correct and yet the
goodness of fit is still very poor. Finally, the hypersurface is very smooth with
no high frequency features. This is a general feature of direct space approaches
to structure solution. The width of these features may be estimated by noting
that the Rietveld %2 is equivalent to the correlated integrated intensities %2 (see
Section 15.6.1). Through Parseval's theorem, this %2 is the same as the volume
integral of the squared difference between the sharpened, observed and calcu-
lated Patterson maps. This correlation function has features that are similar in
shape and width to a vector peak in a Patterson map and this corroborates the
observation in Fig. 15.1 that the %2 hypersurface has smooth Gaussian features
with a full width at half maximum of around 2 A.

15.5 Beating the odds—global optimization algorithms

Global optimization problems are ubiquitous and a large number of different
strategies have been developed for tackling them (Horst and Pardalos 1995;
Floudas 1999). The global optimization problem in powder diffraction is ana-
logous to the conformational search problem in molecular modelling (Leach
1996), with the additional complication that the position and orientation of
a molecule in the unit cell must also be identified. It is therefore unsurprising
that many of the optimization methods employed in molecular modelling are
transferable to the crystal structure solution problem.

The simplest approach is to perform an exhaustive grid search over the
parameter space of interest. This approach, although naive, at least has the
merit of guaranteeing that the global minimum will be found providing that
a suitably fine grid is employed, and has been applied successfully to some
problems in powder diffraction where the parameter space is relatively small
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(Hammond et al. 1997; Chernyshev and Schenk 1998). However, more efficient
search methods are required to deal with the 'combinatorial explosion' that
arises when dealing with torsionally complex molecular structures. We focus
here almost exclusively upon stochastic approaches that can also be classified as
heuristic, in that they produce non-exact, good quality solutions in a reasonable
amount of time.

15.5.1 A search method with a physical basis—simulated annealing

Simulated annealing (SA) is the Monte Carlo method that is currently the most
widely used optimization method for solving structures from powder diffraction
data (Andreev et al. 1997; David et al. 1998; Engel et al. 1999; Putz et al. 1999;
Coelho 2000; Pagola et al. 2000; Stephenson 2000; Coelho 2000; Le Bail 2001;
Favre-Nicolin and Cerny 2002; Stephens and Huq 2002). The Monte Carlo
method employed by Tremayne (Tremayne and Glidewell 2000) and first described
a few years earlier (Harris et al. 1994) equates to SA at a fixed, elevated temp-
erature. Chapter 16 details the essential elements of the SA approach in a powder
diffraction context, and the underlying algorithm is not discussed further here. The
interested reader is referred to two comprehensive books (van Laarhoven and
Aarts 1987; Aarts and Korst 1988) for more detailed discussions of SA.

Simulated annealing possesses several distinct advantages as an optimization
approach: it is an effective algorithm that is straightforward to translate into
computer code and possesses only a limited number of control parameters. The
resultant ease-of-use has undoubtedly contributed to its popularity. Theoreti-
cally, SA is only guaranteed to find the global minimum after an infinite number
of temperature steps. In practice, the global minimum can often be located in a
finite number of steps. Typical SA strategies normally involve multiple
annealing runs—if the same answer is found repeatedly, then there is a good
chance that the global minimum has been located. Furthermore, in the specific
case of structure solution from powder data, the quality of fit to the diffraction
data provides an objective figure of merit with which to judge the reliability of
the structures found by the SA algorithm.

There are many variants on the basic SA algorithm. For example, rather than
simply reduce the temperature of the system at a preset rate (Putz et al. 1999;
Chapter 16), the rate of cooling can be linked to function value fluctuations
(David et al. 1998). Thus, as the system approaches a region where the function
values (e.g. x ) fluctuate significantly as a function of the variable parameters,
the rate of cooling drops in order to allow the system to explore this region. This
is intuitively obvious, as large fluctuations indicate a region where both bad and
good fits to the data exist and care is therefore required in its exploration.
Conversely, in regions where there is little %2 discrimination, the rate of cooling
can be much higher. This variable rate of cooling has a physical interpretation in
terms of statistical mechanics. The energy fluctuations are linked to the specific
heat of the system and the occurrence of a large specific heat is the hallmark of
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a structural phase transition. Care must be taken in cooling through, for
example, a liquid-solid phase transition to avoid quenching into a thermo-
dynamically unfavourable configuration. By analogy, a reduced rate of tem-
perature reduction in an SA run increases the probability of locating the global
minimum configuration. A further simple modification is to introduce a sam-
pling algorithm for the generation of new parameter values that allows large
perturbations from the current parameter values with an exponentially
decreasing probability (David et al. 1998). A more complex modification to the
parameter shift criterion is to introduce the notion of biased sampling which
takes into account the local environment around the current position in para-
meter space and proposes moves that are more likely to be accepted. This
approach, coupled with parallel tempering, has been used to good effect in a
validation exercise in which the structures of all publicly known zeolite mate-
rials were solved using a figure of merit that incorporates both geometric and
diffraction terms (Falcioni and Deem 1999).

Despite the fact that SA is intrinsically a sequential process and thus difficult
to parallelize at a low level, it can still benefit from parallel computing in the
context of parametric execution. For example, multiple SA runs can be started in
parallel, in order to ensure that the same function minimum can be located
several times from different random starting points. This has proven to be
a powerful tool in characterizing the chemical, crystallographic and control
variables that impact upon a particular implementation of SA in structure
solution (McBride 2000; Section 15.8)

15.5.2 A search method with a biological basis—genetic algorithms

Genetic algorithms (GAs) are an approach to global optimization that borrow
heavily from the Darwinian theory of evolution. For a detailed discussion of
their history, their place in the larger scheme of evolutionary strategies and the
correct use of the often-confusing terminology surrounding the subject, the
reader is referred to Michalewicz (1996). GAs have been widely applied to
optimization problems ranging from circuit design (Arslan et al. 1996) to
conformational searching (McGarrah and Judson 1993) and molecular docking
(Jones et al. 1997).

Evolutionary strategies maintain a population of potential solutions to
a problem, employ a selection process based upon the fitness of each of the
individual solutions and have genetic operators that serve to recombine and
vary the initial solutions. Taking the structure solution example, each trial
crystal structure is treated as an individual defined by a collection ('chromo-
some') of variables ('genes'). A characteristic of the individual is its 'fitness',
which is in some way related to how well its associated model diffraction pattern
agrees with the measured diffraction data. By applying the genetic operators of
crossover and mutation, new structures can be produced from a population of
individuals and their relative fitness assessed. By the principle of'survival of the
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fittest', the population evolves towards a point where one or more individuals
reach the global minimum. However, in the majority of GAs, it is not only the
fittest individuals that survive and proceed into the next generation. Rather, it is
the fittest individuals that have the highest probability of survival, given a
selection procedure containing some random element. Indeed, unless one
employs an elitist strategy, there is no guarantee that the fittest individual will
pass into the next generation. Classical GAs use fixed length binary strings as
their chromosomes and employ only two genetic operators: binary crossover
and binary mutation. This is illustrated in Fig. 15.5(a).

However, structure solution is a problem best described in terms of real
numbers rather than discrete binary approximations. Faced with the possibility
of adapting the problem to suit the conventional GA approach, or adapting the
GA to suit the problem, the latter is a much more attractive option
(Fig. 15.5(b)). Hence it is a modified GA (classified by Michalewicz as an evo-
lutionary program) that has found a use in structure solution (Kariuki et al.
1997, 1999; Shankland et al. 1997a, 1998o).

That GAs are effective optimizers is therefore not in doubt. What is less clear
however, is exactly why they are so effective. For example, one study of the use
of a GA designed to assist in the selection of a detection method for ion
chromatography (van Kampen and Buy dens 1997a) found that the recomb-
ination operator (i.e. crossover) was ineffective in improving fitness and that
mutation was therefore the dominant operator in this problem. A similar
conclusion was reached for the use of a GA in the macromolecular folding
problem (van Kampen and Buydens 1996). However, the authors emphasize
that such findings are highly problem-specific and implementation dependent
and wisely confine themselves to the overall conclusion that the effectiveness of
the crossover operator should not be taken for granted. These findings are in
line with the general principle that the behaviour of a GA is somewhat difficult
to understand and control. Control parameters for a typical GA include:
population size, crossover rate, crossover type (single-point, multi-point,
simple, arithmetic, heuristic), mutation rate, mutation type (single-point, multi-
point, uniform, non-uniform, each possessing an individual rate) and the
selection rule by which survivors are chosen from the population. Careful
control of parameters can yield good results. For example, the use of a relatively
large percentage of non-uniform mutations was a key element in fine-tuning the
structure solution of ibuprofen using a GA (Shankland et al. 1998a). With an
overall mutation rate of around five per cent, 40 per cent of these mutations
were uniform and 60 per cent were non-uniform. In a uniform mutation, the
bounds on the allowable values for the genes are fixed for the duration of the
GA run. In a non-uniform mutation, the bounds on the gene progressively
contract around the current value for that gene. Thus, the non-uniform
operator introduced an increasing amount of local searching as the population
aged and ensured that the resultant GA solutions were extremely close to
the final refined structure. Some authors (Srinivas and Patnaik 1994) have
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Fig. 15.5. A simple example of (a) a binary encoded genetic algorithm for a molecular
conformation and (b) a corresponding real valued GA. The molecule in question
possesses three torsion angles that can take any value in the range 0-360°. In the binary
example, each torsion angle is encoded using only two bits: '00'= 0°, '01' = 90°,
' 10' = 180° and '11' = 270°. Two parent molecules consisting of three genes each undergo
a crossover operation involving the exchange of their rightmost genes to create two new
child molecules. The left-hand child subsequently undergoes a mutation in which a single
bit (indicated by the *) is changed to its alternate value. The right-hand child remains
unaltered and both children pass onto the selection process for the next generation. The
corresponding real-valued description follows the same process, except that all possible
torsion angle values are allowed.

suggested that an adaptive GA, which utilizes adaptive (i.e. variable) prob-
abilities of crossover and mutation to realize the twin goals of maintaining
population diversity and sustaining the convergence capacity of the GA, is
appropriate when locating the global optimum in a multimodal landscape.
Others (Michalewicz 1996) have explored the option of adaptive population
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sizes. The permutations are almost endless—in fact, it is not unheard of to use
one GA to optimize the parameters that control another GA (Freisleben and
Hartfelder 1993). Subdivision of a population (the 'island model') is another
variant, in which discrete population clusters are only allowed to communicate
periodically with one another via a process of'migration'. This model is an ideal
candidate for parallelization on a modest 'Beowulf style cluster of computers,
as each 'island' can be mapped easily onto a single processor. Communication
between processors, carried out via shared memory or fast ethernet, is kept to a
minimum and thus the traditional bottleneck of commodity supercomputing is
largely circumvented. Such parallel calculations have been used to good effect in
the GA structure solution of ibuprofen (Shankland et al. 1998a).

All of the GA strategies mentioned so far assume that once an individual has
been created by a crossover operation and altered by a mutation operator, it is
an unchanging entity until the point that its fitness has been evaluated and it
passes onto the next generation or is destroyed. Lamarkian evolution on the
other hand is a 'nature and nurture' approach that assumes that an individual
improves during its lifetime and that such improvements are coded back into the
chromosome (Michalewicz 1996). In practice, these improvements are realized
via invocation of a local optimizer, which quickly pulls each candidate GA
solution to the location of the closest function minimum before the genetic
operators are applied. Unsurprisingly, this can improve the convergence rate of
a GA significantly (Turner et al. 2000).

It is clear that GAs constitute a somewhat beguiling topic. Undoubtedly, one
of the reasons for their success is the ease with which highly problem-specific
information can be incorporated (Grefenstette 1987; Michalewicz 1996). For
example, one could envisage encoding cis-trans isomerism capability into a GA
via the use of a specific mutation, where a fixed rotation of 180° is applied to the
relevant bond at an appropriate rate. Alternatively, the search space can be
bounded with additional problem-specific information. For example, the use
of torsion angle bounds derived from structure-correlation analyses using the
Cambridge Structural Database greatly improved the success rate and con-
vergence rate of a GA used to solve the crystal structure of ibuprofen
(Shankland et al. 1998ft).

McCrone (1963) has stated that 'every compound has different polymorphic
forms and the number of forms known for a given compound is proportional to
time and the energy spent in research on that compound'. In analogous fashion,
it seems equally fair to say that the success of GAs as an optimization method is
proportional to the amount of effort that is put into adapting them to the
problem in hand.

15.5.3 Search methods with a social basis—the swarm

The behaviour of a flock of birds or a swarm of bees bears a striking resemb-
lance to the way in which many global optimization procedures work. It is
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therefore unsurprising to find that particle swarm optimization (Kennedy and
Eberhart 1995) has been proposed as a method for solving multidimensional
non-linear function optimization problems and has found applications ranging
from the location of skiers buried under an avalanche (Robinette 2000) to
solving crystal structures from powder diffraction data (Section 15.7). The
algorithm can be described in a series of concise steps.

1. The system is initialized with a population of potential solutions in random
positions x in the search space. Each solution is henceforth referred to as a
particle.

2. Each particle is assigned a randomized velocity v and an inertia w.
3. The current objective function value (e.g. %2) is evaluated for each particle

and each particle is endowed with a memory of its best ever position,
myBest, together with a knowledge of the best position visited by the swarm
as a whole, gpBest.

4. At each time step, the velocity of each particle is adjusted to have a
component that takes it towards its previous best position and a component
that takes it towards the best position visited by the whole swarm. This
acceleration is weighted by a random term to prevent the swarm getting
trapped in a local minimum.

5. A new position in the solution space is calculated for each particle by
adding the new velocity value to each component of the particle's position
vector.

6. Eventually, the swarm of potential solutions hovers around the best
solution position.

A simple example that demonstrates the application of such an algorithm in
a powder structure solution context (Csoka and David 1999) is discussed further
in Section 15.7.

15.5.4 The downhill simplex algorithm—a 'semi-global' optimizer

The well-known downhill simplex algorithm (Nelder and Mead 1965) is an
optimization method that requires only function evaluations, not derivatives.
The radius of convergence of the simplex algorithm is determined by the size of
the initial step length allowed for each variable. If the step length is sufficiently
large then this approach can be viewed as a local optimizer that has the capability
to 'look beyond' local minima in the immediate vicinity of the current solution.

The utility of the simplex algorithm in structure solution was evaluated
using the famotidine problem mentioned earlier and discussed in more detail
in Section 15.8. Twenty thousand simplex structure solutions were started
from random initial configurations. The \ values obtained from these trials



268 GLOBAL OPTIMIZATION STRATEGIES

are plotted in Fig. 15.4 and closely follow a log-normal distribution. This
distribution is quite different from the other distribution shown in Fig. 15.4,
which was obtained from the random trials (see Section 15.4), in that it is
shifted quite substantially to lower values of %2 and indicates that the number
of local minima in the %2 hypersurface is very large. Despite this, the simplex
algorithm returned two correct structures from the 20000 trials. Given that
each of the 12 degrees of freedom are equally difficult to obtain, this one in
10000 chance can be written as ~1 in 212. This means that the simplex
minimization is indeed semi-global in nature since each variable initially need
only be in the correct half of its parameter space for the correct structure to be
obtained. This impressive convergence makes simplex minimization a worth-
while approach for small problems. Indeed, rigid body structures should solve
with around a one in 64 success rate. Note, however, that each simplex mini-
mization run requires of the order of ~5N2 function evaluations (N= number
of parameters) so that, even in the rigid body case, around 10 000 structures
are assessed in order to return a correct answer. Nevertheless, this relatively
small number is easily calculated and for small rigid structures, the direct
minimization simplex approach offers some speed advantages over the
random walk approach of SA. However, for torsionally complex structures,
the simplex method becomes unwieldy. In the case of famotidine (N= 12), the
number of structure evaluations is around 7 x 106. At an evaluation rate of
1000 structures per second on a DEC 433 MHz Alphastation, the total calcu-
lation time was around two hours, roughly five times slower than an equivalent
single SA run. For molecules with 10 internal torsion angles, the problem
becomes progressively worse and the simplex approach requires ^108 trials,
taking around a day. In contrast to this, our findings indicate that the number of
trial structures required in an SA run is of the order of ^100 x 2N. For N = 16,
A^sA^6 x 106 leading to gains of around 15 over the simplex approach and to
calculation times of around two hours on a DEC 433 MHz Alphastation.

15.5.5 Other approaches

The above-mentioned methods have all been employed in solving crystal
structures from powder diffraction data. However, there still remain many
global optimization strategies that are used elsewhere in chemistry and physics
and are likely to be applicable to the powder problem. For example, the Hybrid
Monte Carlo method originally introduced for numerical simulation in lattice field
theory has been successfully applied to the solution of the crystal structure of
capsaicin from powder diffraction data (Johnston et al. 2002). The interested
reader is referred to a recent review of global optimization approaches in protein
folding and peptide docking (Floudas et al. 1999) for a concise summary of some
relevant methods.
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15.5.6 Which algorithm is best?

Many comparisons between GAs and SA exist (see, for example, de Groot et al.
1990; Ingber and Rosen 1992; Manikas and Cain 1996; van Kampen and
Buydens 1996; van Kampen and Buydens 1997ft), but they are usually ham-
pered by the fact that they are comparisons of particular implementations of SA
and GA for particular problems. For example, a comparison of the perfor-
mance of very fast simulated reannealing (VFSR) with a simple binary coded
GA on a suite of six standard test functions found that VFSR was significantly
more efficient than the GA (Inger and Rosen 1992). In contrast, a comparison
of a simple GA with SA in circuit partitioning problems found that the GA gave
better results than the SA in two out of the three test problems (Manikas and
Cain 1996). Much depends upon the level of problem-specific information
incorporated into the search algorithm.

In the context of structure solution from powder diffraction data, there is
little doubt that SA has the advantage of being straightforward to code and has
relatively few control parameters. The only parameter that varies significantly
from dataset to dataset is the initial temperature of the system, and this can be
calculated automatically via an initial sampling of the %2 hypersurface. Simu-
lated annealing is highly effective even in the absence of a great deal of problem-
specific information and as such, it comes close to a 'black-box' approach that
appeals to many structural chemists.

It remains to be seen whether hybrid SA-GA algorithms (Ackley 1987;
Mahfoud and Goldberg 1995; Renyuan et al. 1996) which take the best features
of both approaches and are already well-adapted to parallel computing
environments find applicability in structure solution.

15.5.7 Use of molecular envelope information

It was mentioned in Section 15.5.2 that incorporation of torsion angle bounds
could improve the performance of a GA-structure solution. However, bounds
need not be limited to intramolecular degrees of freedom. It has been shown
(Brenner et al. 1997) that the use of a structure envelope, calculated from
a periodic nodal surface based upon a few low-resolution reflections, can be
employed to effectively bound the region of space that should be explored by
a search algorithm. Significant improvements in the performance of zeolite
structure solutions have been achieved and the approach has recently been
extended to organic materials (Brenner 1999).
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15.5.8 Hybrid DM-global optimization approaches

The latest releases of EXPO (Altomare et al. 2000; Altomare et al. 2004) take
elements of the global optimisation strategies outlined above and incorporate
them into a Direct Methods framework. It seems entirely logical that continuing
software developments will see an equivalent flow of important features from
DM into the global-optimization-based programs.

15.6 Structure evaluation—the cost function

15.6.1 Efficiency of function evaluations

Regardless of the description of the system under study or the search method
employed, the crystal structure solution process inevitably involves the eva-
luation of a large number of trial crystal structures. The efficiency of the func-
tion called in order to perform this evaluation is critical and impacts upon the
overall time performance of the structure solution process. Clearly, the most
efficient approach is to extract a set of structure factors from the diffraction data
and then work with this set. Thus an early approach used to solve 6-methyl-uracil
from powder diffraction data (Reck et al. 1988) utilized a small number of fully
resolved (mostly low order) reflections in the calculation of figures of merit for
discrete orientation and translation searches. Similarly, only low-angle reflec-
tions (typically 2$<40°, A = 1.54 A, d = 2.25 A) were employed in the structure
solution of several organic compounds by a process that involved the translation
and rotation of rigid fragments throughout the regions of space which were
bounded by limits derived from Cheshire groups (Masiocchi et al. 1994). Cru-
cially, overlapping reflections were not excluded from this analysis. Rather, they
were treated as clumps (multiplets) with a net intensity that could be compared
directly with the sum of the equivalent calculated intensities.

However, there are two main reasons why it is still common practice to use
the weighted profile .R-factor or %2. The first of these is pragmatic and is con-
cerned with the ease with which existing Rietveld refinement codes can then be
adapted for structure solution use. The second is largely anecdotal and is based
on the belief that the intensity extraction stage is an unreliable process (Kariuki
et al. 1997). In fact, all global optimization approaches of necessity use a Le Bail
or Pawley refinement at the outset of the structure solution process, if only to
obtain accurate lattice parameters and peak widths.4 However, there is a strong
body of opinion that believes that the utility of the intensity extraction stage
ends at this point and that structure solution should then be undertaken as a
sequence of full profile Rietveld refinements in which, typically, only the scale

4 Although it is possible to perform 'scale-factor only' Rietveld refinements without prior
refinement of the lattice parameters, zero point, background description and peak shape, the chances
of solving the structure in this way are greatly reduced.
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factor is refined (see, for example: Kariuki et al. 1997; Tremayne and Glidewell
2000). This is based upon the correct presumption that Rietveld refinement is
the optimal method of fitting a structural model to a diffraction pattern but also
upon the incorrect presumption that there is no equivalent approach. As hinted
at by the work of Masiocchi et al. (1994), stated explicitly by Prince (1985) and
expanded upon here, use of the correlated integrated intensity %2 function:

It is apparent from the eqn (15.5) that one requires access to a covariance
matrix in order to evaluate \. For the Pawley method, which is based upon
conventional least-squares, this is straightforward. Although the iterative Le
Bail approach does not automatically generate such a matrix, it is possible to
adapt it to do so (Pagola et al. 2000; Chapter 8) and obtain an expression similar
to eqn (15.5).

Any argument that the structure factor contributions of overlapping reflec-
tions are not correctly partitioned in this approach misunderstands the fact that,
in the global optimization structure solution stage, the relevant partitioning of
the structure factors is derivedfrom the trial structure, in exactly the same way as
it is with the Rietveld method. Even if unphysical negative intensities are pro-
duced in the decomposition of a group of strongly overlapping reflections, eqn
(15.5) preserves the sum of the integrated intensities for that group; under these
conditions, this is the only significant value for the structure solution process.
That eqn (15.5) holds well in practice has now been demonstrated in numerous
publications (see, for example, Shankland et al. 1997'a; David et al. 1998;
Shankland et al. 1998a; Bell et al. 1999; Admans 2000; Dinnebier et al. 2000;
McBride 2000; Smrcok et al. 2001). The mathematical proof of eqn (15.5) was
established by David (2004).

Problems with either Le Bail or Pawley extracted intensities can arise in
high-angle regions of strong overlap, when the background parameters are
also being refined and the background is poorly determined. Under such
conditions, it is probably best to either eliminate this higher angle data from
the fit (as it contains little information of value to the solution process) or
perform a preliminary background subtraction. It should be noted however,

where I/,k is the extracted intensity from a Pawley refinement of the diffraction
pattern, Vhk is the covariance matrix from the Pawley refinement, c is the scale
factor and Fhk is the calculated structure factor from the current trial structure,
is mathematically equivalent to the Rietveld method. There is in fact a simple
relationship between the unnormalized %2 values for the Rietveld, Pawley and
correlated integrated intensity methods: within statistical errors
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that the weight matrix in the correlated integrated intensities \ can be
modified to allow implicit background refinement during the structure solu-
tion process.

Use of the correlated integrated intensities %2 in a structure solution context
allows for the extremely rapid evaluation of trial crystal structures.
For example, the DASH structure solution program (David et al. 2001),
which employs SA as the global optimization method, uses eqn (15.5) as the
evaluation function on which optimization is performed. Taking the structure
solution of hydrochlorothiazide from synchrotron powder diffraction data as
an example (23 atoms, 8 degrees of freedom, 204 reflections to 1.5 A resolu-
tion, 9726 points in the profile) the program evaluates approximately 3500
trial structures per second when running on a single processor 800 MHz Intel
Pentium III based computer.

15.6.2 Multi-objective optimization

For moderately complex molecular organic crystal structures, structure
solution methods based upon the agreement between observed and calculated
diffraction data have so far proven to be adequate. For example, it has been
shown that such crystal structures can be solved quickly and reliably from
powder data without resort to intra- or inter-molecular distance checks
(Shankland et al. 1997'a; David et al. 1998; Shankland et al. 1998a; Bell et al.
1999; Admans 2000; Dinnebier et al. 2000; McBride 2000; Smrcok et al.
2001). However, as increasingly complex structures are tackled, it seems likely
that the information content of the diffraction pattern may need to be 'topped
up' still further with additional information from other sources. One obvious
such source is an empirical potential energy function appropriate to the
system under study (Hammond et al. 1997; Putz et al. 1999; Lanning et al.
2000). In the context of global optimization strategies, the search algorithm
roams a hypersurface that is a combination of the potential energy and dif-
fraction hypersurfaces. An obvious advantage of such a strategy is that local
minima in the diffraction hypersurface may not coincide with local minima in
the potential energy surface, and as such, the combined hypersurface may be
simpler to explore. There is however, the risk that the global minimum of the
empirical potential hypersurface may not coincide with the global minimum
of the diffraction function hypersurface, particularly if the empirical potential
is poorly parameterized. Thus appropriate weighting of the relative con-
tributions to the combined figure of merit is an important consideration. Such
an approach to structure solution has been used for the simple example of L-
glutamic acid, solved by the use of a GA-based search (Lanning et al. 2000)
and the solution of numerous ionic compounds using an SA-based search
(Putz et al. 1999).
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15.6.3 Maximum likelihood

The concept of maximum likelihood based methods for evaluating the cost
function has recently been introduced (Markvardsen et al. 2002; Favre-Nicolin
and Cerny 2004) and this offers substantial benefits in cases where incomplete
structural models are present e.g. a hydrate structure where the main moiety is
optimised and the water molecules are not.

15.7 Examples

The number of crystal structures appearing in the literature that have been
solved by the application of global optimization methods has grown sub-
stantially over the past five years and Table 15.2 lists two representative
examples for each of the commonly employed optimization methods.

Here, we discuss the only example that we are aware of involving the appli-
cation of a swarm algorithm (Csoka and David 1999). The compound is
chlorothiazide (C7H6C1N3O4S2, PI, a = 6.372A, 6 = 8.916A, c = 4.855A,
a = 96.132°, (3 = 99.476°, 7 = 74.412°), a thiazide diuretic whose crystal struc-
ture had previously been solved by DM (Shankland et al. 1997'b). The molecule
was parameterized using an internal coordinate description and Eulerian angles
were employed to describe its orientation. Being in PI, its location within the
unit cell may be fixed by specifying an arbitrary xyz position for one of the
atoms in the molecule. A swarm algorithm of the type described in Section
15.5.3 was coded in the 'C' programming language and the method of correlated
integrated intensities, eqn (15.5), was used to evaluate the best configurations in
X2 space. Each swarm run consisted of 70 particles, with a maximum of 1000
cycles per run. The effect of the inertial weight on the structure solution process
was investigated by performing 20 runs at each inertia value, and the results are
shown in Fig. 15.6(a).

The best results were obtained with an inertia value of 0.9, where the success
rate was ~80 per cent. Figure 15.6(b) shows that use of low particle inertia
results in a search with predominantly 'local' optimizer characteristics; the
relatively low success rate indicates that the algorithm frequently becomes
trapped in local minima. In contrast, Fig. 15.6(c) shows that higher particle
inertia results in a search with a good balance of 'global' and 'local' char-
acteristics. With inertia values of one or more, the 'local' search characteristics
are lost and the algorithm bypasses promising search areas, resulting in a low
success rate. Accordingly, by time-varying the inertial weight of the particles
from a high initial inertia to a low final inertia, the algorithm can be tuned to
improve performance in a manner that is strongly analogous to temperature
reduction in SA.
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Table 15.2 Some recent examples of structures solved by the application of global
optimization methods

Molecular Compound name Methodology Reference
structure

Telmisartan SA

4-(2,3,4- SA
trifluorophenyl)-
1 2 3 5 -i,z,,j, j
dithiadiazolyl

Ibuprofen GA

Fluticasone GA
propionate

Benzophenone Grid

3-amino-4-nitro-6 Grid
-methyl-8-
oxopyrazolol [1,5-b]
-pyrimidine

1,2,3-trihydroxybenzene: MC
hexamethylenetetramine
cocrystal (1 : 1)

fluorescein MC

Dinnebier
et al. (2000)

Bell et al.
(1999)

Shankland
et al. (1998a)

Kariuki
et al. (1999)

Hammond
et al. (1997)

Chernyshev
and Schenk
(1998)

Tremayne
and Glidewell
(2000)

Tremayne
et al. (1997)
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Fig. 15.6. The results of multiple swarm runs for the structure solution of
chlorothiazide, showing (a) the overall sucess rate as a function of inertia, with 20
runs performed at each inertial value, (b) the cumulative number of solutions obtained
as a function of the number of \ evaluations at inertia = 0.1 and (c) a corresponding
plot for inertia =0.8.

15.8 Influence of crystallographic factors

It was stated in Section 15.5.6 that SA comes close to a 'black box' approach to
solving structures. Nonetheless, small changes in the individual elements that
make up an SA strategy can still have a significant bearing on the chances of
reaching the correct solution. This has been demonstrated convincingly in the
case of famotidine form B (McBride 2000), using synchrotron X-ray diffraction
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Fig. 15.7. A plot of the correlated integrated intensities x2 vs the number of SA moves
for 80 repeat runs of the SA structure solution of famotidine form B. The plot shows the
wide variation in the number of moves taken to reach the target x2 value of 100,
corresponding to the correctly solved structure. A few of the runs fail to reach this target,
becoming trapped instead in local minima.

data collected at low temperature and an implementation of an SA structure
solution algorithm. In addition to assessing the impact of obvious algorithmic
factors such as the choice of initial temperature and cooling rate, three other
important factors that impact on the structure solution strategy were investi-
gated systematically: the data resolution, the choice of boundary conditions and
the exact Z-matrix description of the molecule. The impact of a change was
assessed in terms of both the overall success rate achieved in solving the struc-
ture from a large number of replicate SA runs, and the number of SA moves
required to reach each solution. The requirement for the replicate runs is easily
explained by the intrinsically random aspect of the SA process (Fig. 15.7)

The conclusions of the study are reported in detail elsewhere (McBride 2000).
Here we summarize the final refinement (Table 15.3) and highlight two of the
more generally applicable conclusions relating to the crystallographic aspects
of the work.

Firstly, by performing eighty repeat structure solution runs in which the
location of the centre-of-mass of the molecule was restricted to either the
unit cell or the asymmetric unit, it was found that there were no significant
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Table 15.3 Rietveld refinement details for famotidine form B

Space group
Z
Unit cell refinement
Unit cell constants
Data range
Observations
Refined parameters
Restraints

slack (distance)
slack (angle)

Constraints
strict (Aso)

Thermal parameters
Rietveld agreement factors

profile
constraints

P2i/c
4
whole pattern
a=17.6547A, 6 = 5.2932A, c=18.2590A, (3= 123.56°
3-53°
10001
124

restrained to Z-matrix values ±0.001
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Fig. 15.8. A plot of the cumulative number of correct solutions vs the number of
SA moves for the structure solution of famotidine form B in which the location of
the centre-of-mass of the molecule was restricted to either the unit cell (dotted line) or
the asymmetric unit (solid line). Eighty repeat runs were performed for both
conditions.
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Fig. 15.9. Polar plots of torsion angle T\ (designated '5-4-1-18' in Fig. 15.3) determined
from diffraction data measured to (a) 1.5 A, (b) 2.0 A, (c) 2.5 A and (d) 3.0 A resolution.
The maximum histogram values correspond to 35, 43, 29 and 10 structures respectively.
The angle 6 is + 60° from the horizontal at 0°. Thus, the histogram on the 1.5 A plot falls
between +60° and +90°. In the refined crystal structure, T\ — +67.5°.

differences in either the overall success rates or the number of moves required to
solve the structure (Fig. 15.8).

This is to be expected, as all possible solutions are contained within an
asymmetric unit and other parts of the unit cell must give identical solutions.
Put another way, allowing the trial structure to roam freely within the unit cell
must be equivalent to the process where the solution is mapped back on to its
equivalent position within the asymmetric unit. Since the unit cell boundaries
are always much simpler to define than the boundaries of the asymmetric unit, it
is simplest to employ unit cell boundary conditions.

Secondly, it was found that decreasing the resolution of the set of input
reflections from 1.5 to 3 A resulted in a ^30 per cent decrease in the number of
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structures reaching a target %2 (i.e. the %2 corresponding to a correct solution)
within a 4.5 million move limit. More significantly, the structures reaching this
target %2 at 3.0 A resolution were less accurate than those obtained at 1.5 A
resolution when compared to the single-crystal structure of famotidine. In order
to quantify this effect, for each structure reaching the target %2 at one of four
input data resolutions studied (1.5 A, 2.0 A, 2.5 A and 3.0 A), six torsion angles
in the famotidine molecule were measured and their values collated on a series
of polar plots. Figure 15.9 shows the results obtained for one of these torsion
angles ('5-4-1-18' in Fig. 15.3).

The SA algorithm correctly and consistently located the value of this torsion
angle with data as limited as 2.5 A spatial resolution. However, with the 3.0 A
dataset, the spread of values in Fig. 15.9 indicates that the reliability of the
solutions is severely compromised. This implies that for a problem of the
complexity of famotidine, diffraction data should be collected to a minimum
of-2.5 A.

15.9 Caveats and pitfalls

It is clear that the inclusion of a large amount of chemical knowledge in the
form of the known chemical connectivity of a molecule is the key factor
contributing to the striking successes obtained with global optimization meth-
ods in recent years. However, therein lies the principle weakness of the
method—the chemical connectivity must be known and the bond lengths and
bond angles must be known with sufficient accuracy if the method is to converge
successfully. If the input structure is incorrect in some significant degree,
structure solution will usually fail. That it not to say that some molecular
approximations cannot be made. For example, in the case of famotidine form B,
the inclusion/exclusion of hydrogen atoms in the structure factor calculations
had no discernible impact upon the overall success rate of the structure solution
process. Indeed, the omission of a relatively small amount of scattering power is
sometimes a useful strategy for eliminating some torsional degrees of freedom.
Once the main fragment is located, it is then generally a simple matter to locate
the remaining groups either by Fourier recycling or by subsequent global
optimization runs in which the main fragment is held in its previously deter-
mined position.

The random nature of the majority of search methods employed means that
multiple runs are essential in order to establish that the true global minimum has
been located. That this is a necessary step is confirmed by the seductive nature of
the false minima that lie close to the global minimum—see, for example,
Fig. 15.10 where two incorrect SA structure solutions for famotidine form B are
compared with the refined crystal structure.



280 GLOBAL OPTIMIZATION STRATEGIES

Fig. 15.10. A comparison of the refined crystal structure of famotidine form B with (a)
an SA structure solution trapped at a false minimum of x2 = 224, (b) an SA structure
solution trapped at a false minimum of x2 — 325, viewed down the 6-axis, and (c) the
same solution as in '(b)', but with the viewing angle rotated ~45°.

Fig. 15.11. Three orientations of the SO2NH2 group that are observed in the SA
structure solutions of famotidine form B.

The structure with x = 224 (Fig. 15.10(a)) is clearly very close to the true one,
except for the central section which clearly 'zig-zags' in the wrong direction. In
reality, this equates to only two badly placed atoms, and the structure can
certainly be refined from this position. The same cannot be said of the structure
with x2 = 325 which looks excellent in projection (Fig. 15.10(b)) but in actuality,
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Fig. 15.12. The relative positions of the two independent molecules of
4-(2,3,4-trifluorophenyl)-l,2,3,5-dithiadiazolyl in (a) the correct crystal structure (b) a
deep false minimum with intensity x approximately four times higher than that of the
correct crystal structure.

has the backbone appearing almost as a mirror image of the true structure
(Fig. 15.10(c)). It is clear that only a subset of the structure factors has been
well-fitted and that the structure cannot be refined from this position. However,
in both these cases, significant portions of the molecule have been essentially
correctly located, suggesting that Fourier recycling methods may be an
appropriate approach for obtaining the correct structure from these wrong
solutions. Nevertheless, as stated above, the most straightforward approach
remains multiple attempts at structure solution. With the advent of efficient
global optimization programs such as DASH (David et al. 2001), the ability to
repeat tens of structure solution attempts is recommended.

One problem that arises during the structure solution of famotidine relates to the
orientation of the SO2NH2 group. The X-ray scattering power of an 'NH2' group is
on a par with that of an O-atom, and these three orientations, shown in Fig. 15.11,
are essentially indistinguishable with relatively low spatial resolution data. Thus, it
is not at all surprising to observe a number of structure solutions in which the value
of the torsion angle that determines the orientation of this group is found to be
±120° removed from the correct answer. In such instances, the correct orientation
can usually be determined from careful Rietveld refinement, and/or intermolecular
bonding considerations. If a definitive result is essential then long wavelength,
high-resolution neutron powder diffraction (Chapter 5) can be used to discriminate
between these orientations because nitrogen scatters substantially more strongly
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than oxygen, and hydrogen atoms are also easily located by virtue of their negative
scattering length.

It has been our experience that false minima are even more of a problem in
structures that possess more than one molecule in the asymmetric unit. For
example, in the structure solution of 4-(2,3,4-trifluorophenyl)-l,2,3,5-dithiadiazolyl
(P2i/n, Z' = 2), several deep local minima with broadly reasonable crystal
structures were located in the vicinity of the correct crystal structure. An
example of one of these minima is shown in Fig. 15.12. Multiple SA runs were
therefore required to ensure that the structure with the lowest value of %2 could
be consistently obtained and that no lower point on the hypersurface could be
reached. Of course, the ultimate arbiter of any structure determination is
satisfactory Rietveld refinement to a chemically sensible structure.

15.10 Conclusions

Global optimization methods of structure solution are certainly now
competitive with DM when applied to powder diffraction data collected from
molecular organic compounds. The same may be true of inorganic compounds,
though it is not the remit of this chapter to discuss this. While the methods are
undoubtedly computationally intensive, it is pleasing to see that it is algorithmic
development rather than raw computing power that has transformed global
optimization methods from a niche interest into a mainstream approach.

How these methods will compare with Direct methods in the long run
remains to be seen. Both approaches are still being intensively developed. Any
direct comparisons are likely to be frustrated by the same problems that, for
example, haunt comparisons of SA and GA.

In the rush to adopt these powerful approaches to structure solution, the
importance of the prior stages of structure determination must not be forgotten.
This extends back as far as data collection, where a little time spent recrystallizing
a sample in order to produce sharper diffraction peaks, or a little time invested in
calculating an appropriate data collection strategy (Chapter 6; Shankland et al.
1997ft) will be rewarded many times over at all subsequent stages. Nor should it
be forgotten that prior information from other analytical methods can also be
usefully employed in combination with the diffraction data; see, for example,
Middleton et al. 2002, for a description of how conformational information
derived from SS-NMR was used to facilitate a powder structure determination.
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Solution of flexible molecular structures by
simulated annealing

Peter G. Bruce and Yuri G. Andreev

16.1 Introduction

The simulated annealing (SA) approach to structure determination from
powder diffraction data described in this chapter differs fundamentally from the
methods adapted from single-crystal crystallography. No attempt is made to
extract individual intensities and treat them in a single-crystal sense. Instead
effort is concentrated on generating chemically plausible, but random, struc-
tural models, whose calculated powder patterns are tested against the experi-
mental data.

Rietveld recognized the inevitable limitation of any approach that relies on
obtaining individual reflection intensities from powder data, and in response
introduced whole-pattern fitting (Rietveld 1969). His method has been used
successfully to refine the details of partially known structures in many hundreds
of cases. The only barrier to structure determination, as opposed to refinement,
with the Rietveld approach is the use of the least-squares method of mini-
mization, which requires that the starting structural model be close to the
correct structure. This is because structural parameters can only be adjusted in
the direction of decreasing x', that is, a downhill move, improving the fit
between the calculated and observed profiles. In other words, the Rietveld
method can only locate the local minimum in the goodness of fit, hence the
necessity to start from a structural model for which the local minimum coincides
with the global minimum. By definition, the starting structural model for a
structure determination is unlikely to bear much relationship to the correct
structure. The probability is negligible that starting from a random structural
model, the true structure (corresponding to the global minimum in the
goodness of fit) can be obtained.

A summary of the minimization methods capable of finding the global
minimum in the presence of multiple local minima is given in Chapter 15. In
the SA method, a Monte-Carlo procedure is used to generate random models
for the structure. This is achieved by making stepwise increments, random in
size and direction, of the structural parameters. The models may yield a
better fit (downhill, i.e. lower %2) or worse fit (uphill, higher %2) between the
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calculated and observed profile. The latter is critical as it permits escape from
local minima. As the minimization progresses, tolerance for the uphill steps is
gradually decreased until steps in both directions are exhausted. At this point,
the set of adjustable structural parameters corresponds to the lowest possible
value of the figure-of-merit function, that is, the global minimum. The
potential of SA in the realm of molecular structure determination was first
demonstrated by Newsam et al. (1992), who solved the previously known
crystal structure of benzene using a modified Rietveld method. In addition to
an SA minimization, the authors included a rigid-body representation of the
benzene ring. This allowed a significant reduction in the number of variable
structural parameters. The crystallographic coordinates of all the constituent
atoms used to calculate the powder pattern were computed using only the
positional and orientation parameters of the rigid body as a whole (six
parameters).

The rigid-body approach has been further exploited in the structure solution
of molecular structures that are marginally more complex than that of benzene
(Harris et al 1994; Harris and Tremayne 1996; Tremayne et al. 1997). However,
the authors did not utilize minimization of the full-pattern goodness-of-fit
function but instead generated trial rigid-body structures in a Monte Carlo
fashion and then analysed all the moves in a subsequent step to select several
low minima. The implementation of such an approach involves multiple sub-
sequent refinements in order to identify the structure that corresponds to the
lowest value of the figure-of-merit function. While successful for relatively rigid
structures, it is likely that this approach will not allow structures with a larger
number of intramolecular degrees of freedom to be solved.

For structure solution from powder diffraction data to become of general
utility, the development of a robust approach capable of tackling both flexible
and rigid structures was vital. Determination of flexible structures by SA is
much more challenging, because at first sight the number of possible structural
permutations appears to be enormous. Indeed it has been estimated that the
computation required to perform an exhaustive search of possible structural
models would take up to 109 years, even for a relatively simple structure
(Shankland et al. 1998). The SA approach used successfully for benzene can be
extended to embrace the much larger range of crystals containing highly flexible
moieties. Flexibility may be in the bond lengths, bond angles or torsion angles
and in some cases it is essential to vary all of these in order to achieve a suc-
cessful structure solution. The modified SA method is also capable of tackling
the solution of polymeric structures in which a single molecule straddles more
than one asymmetric unit. The problem here is that random models of the
asymmetric unit are only valid if they generate chain continuity. Thus the
interatomic connectivity at the junctions of neighbouring asymmetric units is
determined merely by the relevant symmetry operator of the space group and
cannot be maintained by random variation of the relevant bond length, bond
angle and torsion angle.
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The key to this approach is the development of a stereochemical description
that permits the atomic positions of the molecular structural model to be
defined in terms of bond lengths, bond angles and torsion angles, rather than
individual atomic coordinates (Andreev et al. 1996, 1997a). This, in turn, per-
mits attention to be restricted to chemically plausible structural models and
thereby reduces the number of trial structures significantly and renders tractable
the otherwise impossible task of solving the crystal structures of flexible mole-
cules. The approach to the geometrical description of flexible molecules via
stereochemical parameters is suitable for describing a molecular fragment of
any kind.

16.2 Simulated annealing

The principles behind the SA approach and its distinctive features in compar-
ison with other methods of continuous minimization are best understood by
analogy with the process of forming a solid by cooling from a melt. Let us
assume that the solid phase can be either amorphous or crystalline. At tem-
peratures above the melting point, atoms have a high mobility and are in chaotic
motion; the total energy of the ensemble is also high. The minimum energy of
this system corresponds to a crystalline solid. There are two extreme routes by
which the melt may be solidified: slow cooling or quenching. During the latter
process, a random atomic configuration is immediately frozen, forming a glass
with a total energy somewhat higher than that of the crystalline state. If the rate
of the temperature decrease is low enough, such cooling corresponds to an
annealing process in which the chaotic motion of free atoms in the melt is
gradually reduced allowing the ensemble to explore the energy space fully and
hence to adopt the most energetically favourable (crystalline) configuration.
Applying this thermodynamic reasoning to crystal structure solution from
powder data requires the substitution of the atoms of the melt with the variable
structural parameters of the ensemble (e.g. the atomic coordinates or bond
lengths) and energy by the value of a figure-of-merit function (%2).

The most frequently used method of minimization is 'conventional' gradient
least-squares, which is based on an iterative linearization of a target function
using its Taylor series expansion in the vicinity of a minimum (e.g. Wilson
1995). This is akin to quenching. It does not allow any chaotic changes in the
structural parameter values and adopts only those changes that are in the
downhill direction of the figure-of-merit function. Such a procedure is useful for
refinement tasks only when a model is already known with sufficient accuracy
and is already close to the global minimum. In a situation where the initial set of
structural parameters describing the system is a poor estimate of the true values
(a situation implicit in the context of structure solution), the minimization
algorithm must allow random steps in the uphill direction of the figure-of-merit
function in order to escape local minima in the search for the global minimum.
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The number of uphill steps representing chaotic behaviour of the figure-of-merit
function should however be slowly decreased by introducing a varying
attenuation factor so that minimization towards the global minimum may
occur. This procedure is analogous to that of the slow cooling (annealing) with
the attenuation factor acting as the temperature.

A convenient way of introducing random steps, which includes the possibility
of uphill moves, is known as the standard importance sampling algorithm
(Metropolis et al. 1953). Application of this procedure to the minimization of
a figure-of-merit function, %2(P), whose value is determined by a set of the
crystallographic parameters P, may be outlined as follows. A new set of param-
eter values P' is accepted if either

or if

where P'^1 is a previously accepted set of parameters, Ax;:ur is a current
marginal value of the \ variation serving as a temperature analogue, R is a
random number in the range from 0 to 1. In the case of continuous mini-
mization, eachy'th component P'. of the P' vector is calculated via the P'~l value
of the P' ~ 1 vector in a Monte-Carlo fashion:

where Aft is a predefined maximum step width and r,- is a random number in the
range from —1 to 1. Once P' is accepted, P'^1 is set to P' and the process
reiterates.

An account of various types of 'temperature-reduction' procedures is given
by Press et al. (1992). Here we mention only one, which was used successfully in
the examples of the structure solutions presented in Section 16.4. At a given
value of AX^,., the sampling algorithm reiterates as long as the total number of
rejected and accepted P' vectors (referred to as moves from here on) exceeds the
pre-set value of Nlol  or until the number of accepted moves becomes greater
than /i • Ntot, with the/i value also chosen in advance. As soon as this happens
the value of Ax2

ur is reset to (1 — /2) • Ax2
ur with a predetermined value of /2

and the whole procedure continues. Minimization terminates when there are no
downhill moves at a current value of A x -

16.3 Constraints and restraints

Reduction of the number of adjustable parameters and narrowing parameter-
space are favourable procedures for any optimization task. This can be
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accomplished by imposing hard constraints and soft constraints (restraints) on
the number of parameters or on their values. In this way, only chemically
plausible molecular models (e.g. ones with no unrealistic bond lengths) need to
be explored.

16.3.1 Non-structural constraints

The most obvious constraint to be used in the course of structure solution by a
full-pattern fitting approach is fixing the values of those profile-defining para-
meters that are not directly related to the arrangement of atoms sought-for
within the unit cell. The values of cell constants, peak-shape and half-width
parameters, background, peak asymmetry etc. are readily determined with
reasonable accuracy using full-pattern decomposition methods without refer-
ence to a structural model (see Chapter 8). The only parameter that has no effect
on the structure, but cannot be fixed in advance, is the scale factor for the
calculated pattern. However, its value is easily computed for each new trial
structural model using the linear-least-squares method. The effect of introdu-
cing these constraints is two-fold. First, there is the advantage of a reduction in
the number of variable parameters. Second, the disadvantage is that it is
unreasonable to expect the fixed values to provide the best fit to the experi-
mental powder pattern when the profile is calculated using the structural
parameters instead of the integrated intensities of individual Bragg peaks used
during the full-pattern decomposition. In this case the restrained structure
solution terminates in the vicinity of the 'true' global minimum rather than at
the minimum itself. To reach the minimum, a subsequent refinement of all
parameters using the Rietveld method is required.

16.3.2 Structural restraints

Structural restraints are an integral part of modern software for structure
refinement by the Rietveld method and are a means of taking into account our
knowledge about the atomic arrangement (Baerlocher 1993). Restraints are
usually introduced into the calculation of the figure-of-merit function as a sum
of residuals for additional 'observations'. Each 'observation' is typically the
most probable value of an interatomic distance or angle, while its corresponding
term in the residual is the actual value calculated from the current set of atomic
coordinates. Such restraints do not eliminate unreasonable structural models
from the refinement process, but do impose a severe penalty on the minimized
quantity (%2) when there is a deviation from the most probable value. Although
applicable in the case of structure solution, such an approach is rendered
unattractive because of the more computationally demanding nature of the SA
method and because of the problems encountered in weighting the penalty
terms of the figure-of-merit function. An entirely different approach to the
imposition of restraints on structures containing fragments of an approximately
known geometry (e.g. molecules) not only preserves all the attributes of the
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established procedure but, in addition, allows randomized minimization by SA
strictly within the pre-determined limits of the structural parameters.

16.3.3 Molecular crystals

In the case of molecular crystals, the connectivity of atoms within the molecule
is generally known. By describing the positions of the atoms in terms of their
bond lengths, bond angles, and torsion angles, rather than atomic coordinates,
only chemically plausible structural models need be explored. The values of
these stereochemical descriptors are simply restrained to lie within certain
limits. This greatly reduces the number of trial structures. The number can be
reduced still further by checking for unfavourable contacts between non-
bonding atoms and for the spatial continuity of an infinite moiety (e.g. polymer
chain) at the junction of neighbouring asymmetric units. The imposition of
these chemical constraints makes the process of minimizing %2(P) by SA much
more tractable. Although it is the stereochemical descriptors that are altered to
generate each new chemically plausible model, the crystallographic coordinates
for each model are still required in order to calculate the powder profile using
the conventional mathematical formalism. However these can be obtained from
the stereochemical descriptors (bond lengths /, bond angles cj>, and torsion
angles T) by expressing initially the atomic coordinates in a local Cartesian
frame whose origin is fixed on an atom from the molecule's framework which
has at least two bonds attached to it. If the X-axis of the frame is chosen to lie
along one of the bonds, the F-axis is then set perpendicular to the .Sf and belongs
to the plane formed by the first bond and any other second bond attached to the
origin. The Z-axis completes a right-handed orthogonal set, then the coordi-
nates of atoms that are one bond length from the origin are calculated using
trigonometric functions and values of corresponding bond lengths and bond
angles. When the origin coincides with the position of the (TV— l)th atom of
a molecule containing TV atoms, the coordinates xl

m, ytm, zl
m of each mih

(m = 1, TV — 3) atom positioned on a bonded pathway originating from the bond
lN-2,N-1 between the (TV— l)th and (TV— 2)th atoms, through which the X-axis
is drawn, can be computed with the recurrent formula put forward by Arnott
and Wonacott (1966)

Elements of the rotational matrices [AJ] are defined by
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where /,-,,•+1, <t>jj+ij + 2 and rjj+ij + 2j + j, denote the bond lengths, bond
angles, and torsion angles formed by the atoms whose numbers are listed in the
subscripts. When, in addition to the mih atom, the (m — l)th atom has k bonded
neighbours it is sometimes more convenient to calculate the coordinates of the
(m + k)ih atom by rotating the (m — l)-m bond around the (m —2)-(m — 1)
bond while assigning the length of the former to lm_ i > m + £

where /i,/2, h are the Cartesian direction cosines of the rotation axis ((m —2)-
(m — 1) bond). The angle of rotation, a, is a function of the bond angles
<t>m-2,m-\,m + k and < ^ m _ i j m > m + /fc (Andreev et al. 1997a), whose values in most
cases can be constrained more readily than the value of TJ in eqn (16.5).
Transformation of the atomic coordinates from the local Cartesian to the
crystallographic frame introduces a set of additional parameters which deter-
mine the position and orientation (denned by the Eulerian angles O, <f> and *) of
the molecular fragment as a whole in the unit cell (Goldstein 1980; International
Tables for X-ray Crystallography 1959).

Once this procedure is introduced into a Rietveld-type algorithm in which the
original least-squares procedure is substituted by the method of SA, the
restraints are imposed in a straightforward manner by allowing the parameters
to accept only reasonable values within predetermined limits instead of pena-
lizing the value of x (P) when the limits are violated. The range of acceptable
values for bond lengths and bond angles in most classes of compounds is well-
known, torsion angles vary between -IT and TT and the coordinates of the reference
Mh atom are kept within the dimensions of the asymmetric unit. The limits on
the Eulerian angles are 0 < O, * < 2-Tr and 0 < <f> < TT. Such a description allows
the introduction of further constraints, which reduce the total number of
parameters to be varied. For example, chemical knowledge can indicate that all
like bond lengths or bond angles (e.g. all /c c and all <j)C c c in a benzene ring)
can be treated as variable but equal to each other, or that a certain part of the
molecule is flat implying that corresponding torsion angles can be kept at fixed
values 0 or TT, or the whole molecular fragment is rigid, in which case only the
values of the Eulerian angles and of the reference-atom coordinates are to be
varied. More sophisticated constraints on the conformation of molecules, such
as for example either the boat or chair arrangement of atoms in a six-membered
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ring, can also be imposed. Although introduction of the above constraints is
computationally beneficial, it must be done with caution, because in certain
cases (see Section 16.4) even a slight reduction of the molecular flexibility can
mislead the structure solution.

16.4 Examples

The following structure solutions were performed using X-ray powder dif-
fraction patterns collected in steps of 0.02° in transmission mode on a STOE
STADI/P diffractometer with Cu Kai radiation. The computer code imple-
menting the full-profile-fitting procedure with minimization by the SA method
was written in Visual C++. The code for pattern calculation was adapted from
the CPSR software package (Andreev et al. 1995). For each new structure
solution, a customized subroutine was written to define the coordinates of the
atoms in a local Cartesian frame via stereochemical descriptors following the
general approach described in Section 16.3.3. The program was implemented on
a PC under Windows NT. Final structure refinements were performed using the
Rietveld procedure included in the GSAS program package (Larson and Von
Dreele 1987).

All the structures presented here are described in the monoclinic space group,
P2i/c. Details concerning indexing and space group determination are given in
the references (Andreev et al. 1997'a, b\ MacGlashan et al. 1999). Profile param-
eters and lattice constants were fixed at the values obtained from profile-fitting
using the CPSR program suite. The background was subtracted manually. The
set of variable parameters used in the SA runs included the overall isotropic
displacement factor, B. Hydrogen atoms were ignored during the structure
solution and were added only at the refinement stage. Unless otherwise stated,
the minimization of %2(P) by SA was performed using a value of five for the
initial 'temperature' parameter (Axcur), Ntot=5QQQ, and/! =/2 = 0.1.

The three examples below serve to illustrate the basic approach, the effect of
molecular flexibility and the level of structural complexity that can be tackled.
All of the examples are poly(ethylene oxide): salt complexes, which are com-
posed of salts, for example, LiCF3SO3 dissolved in the solid high molecular
weight polymer poly(ethylene oxide) (PEO). The polymer is a continuous
linear chain with the repeat unit (CH2-CH2-O). Previous studies indicate that
in complexes with ethylene oxide: salt ratios of 3 :1 and 4:1, the polymer chain
adopts a helical conformation (Chatani and Okamura 1987; Lightfoot et al.
1993, 1994), while in the case of complexes with a 1:1 ratio, the chain forms a
stretched zig-zag conformation (Yokoyama et al. 1969; Chatani et al. 1990).
The cations in all the above complexes are coordinated to the oxygens of the
chain and to the oxygens of the anion. No structures of complexes with
PEO: salt ratios higher than 4:1 had been reported prior to our work.
(PEO)3: LiN(SO2CF3)2 is of interest because the PEO-imide system has one of
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the highest levels of ionic conductivity for a PEO-based polymer electrolyte at
room temperature.

16.4.1 (PEO)3:LiN(SO2CF3)2

Similarity between the lattice parameters of (PEO)3: LiN(SO2CF3)2

(a= 12.034A, b = 8.660 A, c= 19.139 A, /3= 128.5°) and the previously deter-
mined (PEO)3:LiCF3SO3 (a= 10.064A, 6 = 8.613 A, c= 16.77A, /3= 121.0°,
Lightfoot et al. 1993) suggested that the orientation and conformation of
the PEG chain in (PEO)3: LiN(SO2CF3)2 might be similar to that found in
the (PEO)3: LiCF3SO3, where the helical axis is parallel to the ft-axis and
coincides with the 2\ screw axis. However, all attempts to refine the structure
of (PEO)3: LiN(SO2CF3)2 on the basis of the known structure of (PEO)3:
LiSO3CF3, adjusted to the new dimensions of the unit cell, failed, as did
attempts to solve the structure by approaches based on Direct methods and
difference Fourier synthesis.

Density measurements suggested the presence of one formula unit in the
asymmetric unit of the cell. Initially an SA run was performed using fixed
coordinates for the atoms of the three EO units comprising the PEO chain
(adapted from the (PEO)3: LiCF3SO3 crystal structure). The Li+ cation was
placed inside the helix and its coordinates were allowed to vary. The coordinates
of the atoms comprising the imide anion N(SO2CF3)2~ (Fig. 16.1 (a)) were
expressed in terms of stereochemical descriptors. The total number of variable
parameters required to describe the flexible structural model was reduced from
55 to 24 by invoking the approximation that in the imide anion, all bond lengths
of a given bond type (e.g. all C-F or S-O bonds), all bond angles of a given type
(e.g. all S-C-F or C-S-O angles), and all like torsion angles (N-S1-C1-F1 and
N-S2-C2-F4) are equal. The P vector used to calculate %2(P) included the
positional parameters for Li+ and for the imide defined through the Cl carbon
(xu,yu,z-Li,xci,yci,zCi), the orientation of the imide (Oimide, $imide, *imide),
the bond lengths (/c F, k c, /s o, Is N), the bond angles (cj>c s o, <^s c F,
4>o s o, </>F c F, 4>c s N, </>N s o, <^s N s), the torsion angles (TN s c F, TCI si
N S2> Tsi N S2 C2) and the overall displacement parameter B. The initial values
of the bond lengths and angles were taken from a crystallographic database.
The SA minimization analysed ^200 000 chemically plausible structural models.
Approximately 15 000 of these were accepted while the rest were rejected either
on the basis of the test for closest approach (model rejected if atoms closer than
the sum of their Van der Waals radii) or by the Metropolis algorithm (uphill
move). The structural model, frozen at Ax;:ur = 0.02, after subsequent refine-
ment gave the fit to the experimental pattern shown in Fig. 16.1(b). Although
the quality of fit is reasonably good, a noticeable mismatch is clearly seen in the
inset of Fig. 16.1(b) indicating that the model is still inadequate.

To tackle the problem of the unsatisfactory fit, the SA procedure was
revisited, this time with extra flexibility added to the structural model. The
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Fig. 16.1. (a) Imide anion in a local Cartesian frame, (b) Observed (crosses), calculated
(solid line) and difference X-ray powder diffraction patterns for (PEO)3: LiN(SO2CF3)2

after refinement and following the SA run with fixed coordinates for the atoms belonging
to the PEO chain. The insert shows an expansion of the region from 24° to 40° in 26.

polymer chain was allowed to vary its position and conformation in addition
to the set of parameters involved in the first run. The coordinates of the atoms
comprising the chain (Fig. 16.2(a)) were calculated with all bond lengths and
bond angles fixed at the values obtained in the course of the last refinement.
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Fig. 16.2. (a) A fragment of the PEO chain in a local Cartesian frame, (b) Observed
(crosses), calculated (solid line) and difference X-ray powder diffraction patterns for
(PEO)3: LiN(SO2CF3)2 after refinement and following the SA run in which the position
and conformation of the PEO chain were varied. The insert shows an expansion of the
region from 24° to 40° in 29.

Such a description added 12 parameters to the P vector: xcl,ycl,zcl, OPEO,

'J'PEO, ^PEO; TO5 C3 C4 O6> TC3 C4 O6 C5> TC4 O6 C5 C6> TO6 C5 C6 O7> TC5 C6
o? C7, Tce 07 c? cs- The total number of rejected and accepted trial config-
urations at each 'temperature' was chosen to be 7Vtot = 7000 while the initial
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Fig. 16.3. (a) PEO chain and (b) a single imide anion from the structural models
corresponding to the fits shown in Fig. 16.1(b) (left) and Fig. 16.2(b) (right).

value of Axcur was set to 0.5, preventing large variations of the parameter
values when making an uphill step in %2(P). Over 100000 random structural
models were generated with only 861 being accepted. Approximately 90 per
cent of the rejected trial models were discarded on the grounds of breaking the
continuity of the PEO chain at the junctions of neighbouring asymmetric
units. The best structural model was used in a new refinement, which gave an
excellent fit to the observed pattern (Fig. 16.2(b)). Apart from a somewhat
different chain conformation, the second SA run has revealed a different
conformation for the SO2CF3 fragments of the imide group about the S2-N
bond (Fig. 16.3), which did not appear during the first run with the chain fixed
and could not be established in the course of the first refinement by the
Rietveld method. The final structure of (PEO)3: LiN(SO2CF3)2 is shown in
Fig. 16.4. As in other 3 :1 complexes, one cation is located in each turn of the
PEO helix and is coordinated by oxygen atoms. Further discussion of the
structure and computational details are given in Andreev et al. (1996, 1997a).
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Fig. 16.4. (a) View of the (PEO)3: LiN(SO2CF3)2 structure down the 6-axis. (b) Part of
the structure showing a single polymer chain with associated ions (hydrogen atoms are
not shown).

16.4.2 PEO: NaCF3SO3

Based on the observed density and unit cell volume, the asymmetric unit of
PEO: NaCF3SO3 comprises a single EO unit, a sodium cation, and a triflate,
CF3SO^, anion. The stereochemical description of the anion coincides with that
of the NSO2CF3 moiety (see Fig. 16.1(a)) of the imide anion but with the
nitrogen atom substituted by an oxygen.

The initial trial structure for the SA run was chosen at random and did not
provide a match between the calculated and observed diffraction patterns.
During the minimization, 27 parameters were varied simultaneously with all
bond lengths and bond angles associated with particular bond types in the
triflate set to be equal. This constrained SA run produced a structural model
(Fig. 16.5(a)) with a continuous PEO chain along the shortest cell axis giving a
reasonable profile fit after subsequent refinement by the Rietveld method



EXAMPLES 299

Fig. 16.5. (a) Refined structural model of PEO : NaCF3SO3 after the SA run with all like
bond lengths and bond angles in the triflate ion treated as equal. Solid lines connect the
Na+ cation to its nearest neighbours, (b) Observed (crosses), calculated (solid line)
and difference powder diffraction profiles for the above structural model of
PEO: NaCF3SO3.
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(Fig. 16.5(b)). However all attempts to improve the fit further by refinement
failed, leaving the best %" equal to six and a noticeable misfit in the 29 range
from 33° to 55° (see insert in Fig. 16.5(b)). The refined model placed fluorines
rather than the more negatively charged oxygens of the triflate anion adjacent to
the Na+ cation and did not ensure coordination of the sodiums by the chain
oxygens (see Fig. 16.5(a)). In addition, the separation of adjacent Na+ ions was
only 3.26 A which is highly unlikely based on the Coulombic repulsion. Nega-
tive values of the displacement parameter B for some of the atoms provided
further evidence indicating the inappropriateness of the structural model.

Successful structure determination was achieved after removing the con-
straint that all like bond lengths and bond angles in the triflate were equal. A
new SA minimization was performed allowing all such lengths and the angles to
vary independently. During this run, 37 parameters were varied in a random
fashion but with the imposition of chain continuity. The structural model
obtained after further refinement (Fig. 16.6(a)) revealed six-fold coordination of
the Na+ ion and provided an excellent match between the observed and cal-
culated patterns with %2= 1-1 (Fig. 16.6(b)) and all B values positive.

The dramatic deleterious effect of averaging the bond lengths and angles on the
structure solution could not have been anticipated in advance because the same
constraint did not negate finding the internal conformation and position of the
imide ion (see Section 16.4.1) with almost twice as many like bond lengths and
bond angles set to be equal. Nevertheless, the distribution of the scattering power

Fig. 16.6. See caption opposite.
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Fig. 16.6. (a) Refined structural model of PEO : NaCF3SO3 after the SA run in which all
like bond lengths and bond angles in the triflate ion were varied independently. Solid
lines connect the Na+ cation to its nearest neighbours, (b) Observed (crosses), calculated
(solid line) and difference powder diffraction profiles for the above structural model of
PEO: NaCF3S03.

Fig. 16.7. Solid line—calculated powder diffraction pattern of PEO : NaCF3SO3 based
on atomic coordinates obtained in the final refinement. Crosses—calculated powder
diffraction pattern of the modified PEO : NaCF3SO3 structure by averaging all like bond
lengths and bond angles in the triflate ion.

among the constituent atomic species in the case of PEO: NaCF3SO3 was such
that a random search using the constrained model was biased from the start and
could not yield the correct solution. As an illustration of the effect of imposing too
high a level of constraints, Fig. 16.7 shows a significant change in the appearance
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of the calculated diffraction pattern upon averaging the bond lengths and bond
angles of the triflate in the final structural model. Further computational details
and discussion of the structure can be found in Andreev et al. (1997ft).

16.4.3 PEO6:LiAsF6

In the preceding sections, the dangers of over-constraining the molecular
moieties during the structure solution of polymer: salt complexes were
demonstrated. Therefore, for the structure solution of the first 6:1 complex, all
molecular fragments were treated as fully flexible from the outset. Analogous to
the previous examples, the asymmetric unit consisted of a single formula unit of

Fig. 16.8. (a) Observed, calculated and difference powder diffraction patterns of
PEO6: LiAsF6 (b) The structure of PEO6: LiAsF6.



DISCUSSION 303

PEO6: LiAsFg. The anion in this case may be described as a near-perfect
octahedral arrangement of fluorines around the As atom. Seventy-nine ste-
reochemical parameters, including 15 torsion angles, were varied simulta-
neously in the SA procedure. The initial position and orientation of all
fragments along with the conformation of the PEO chain were chosen at
random and provided no match between the calculated and observed diffraction
patterns. This SA run, during which 7000 out of 160000 moves were accepted,
produced a structural model with a much improved profile fit. The location of
the Li+ ion was verified using routine Rietveld refinement of neutron diffrac-
tion data collected on the OSIRIS diffractometer at ISIS, Rutherford Appleton
Laboratory on a deuterated sample. The final structural model (50 atoms in the
asymmetric unit) obtained after refinement produced an excellent fit to the
diffraction pattern (Fig. 16.8(a)) with %2 = 3.2 (Rp = 4.9 per cent, Rwp = 6.6 per
cent, 3899 data points, 1370 reflections, 168 variables, 135 soft constraints).

The structure is completely different from any previously known polymer
electrolyte. The Li+ cations are located within cylinders formed by interlocking
double, non-helical, polymer chains (Fig. 16.8(b)). Each cation is coordinated
simultaneously by both chains giving a total coordination around Li+ of five.
In contrast to other known PEO complexes, the anions do not coordinate
the cations but instead are located outside the cylinder in the interchain
space. Further discussion of the structure may be found in MacGlashan et al.
(1999).

16.5 Discussion

The SA method based on a full-profile fit of the experimental pattern is capable
of determining relatively complex crystal structures containing highly flexible
molecules. Recently it has been suggested that instead of calculating a complete
powder diffraction pattern for each random structure and fitting it directly to
the observed pattern, the process could be divided into two steps. Step 1
involves extracting integrated intensities from the observed pattern, using either
the Pawley (1981) (Shankland et al. 1997; David et al. 1998) or the Le Bail (1988)
(Pagola et al. 2000) approach. In step 2, the randomly generated structures are
tested against the set of intensities rather than the entire profile. Molecular
structures, with up to 16 degrees of freedom, have been solved using SA mini-
mization of the figure-of-merit function based on integrated intensities (David
et al. 1998). The advantage of this approach is that it offers a significant
reduction of over 100 fold in the computational time. Typically the full-profile
SA method requires between 12 and 24 hours on a 450 MHz Pentium PC. As is
frequently the case in modern crystallography, the computational efficiency is
much greater than that of the other essential steps in the process of structure
determination. Often the time taken to prepare the compound, collect high
quality data, index the powder pattern and write the paper, considerably
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exceeds the computation time! In the case of relatively complex structures, peak
overlap is likely to be severe and there has been considerable debate whether, in
such circumstances, the fashion in which group-overlapped intensities are dealt
with in the two-step method is valid or leads to a loss of information compared
with full-profile fitting. It is, of course, in the structure solution of such complex
compounds that the increased computational efficiency would be particularly
advantageous.

Perhaps the most interesting question is what level of structural complexity
can be tackled successfully. In the context of the SA method, the issue is not the
size of the structure measured by the number of atoms in the asymmetric unit,
but the degree of flexibility that has to be allowed in order to determine the
crystal structure of the molecule. If the structure is permitted to be fully flexible
(i.e. all bond lengths, bond angles, torsion angles and positional and orientation
parameters of each fragment in the asymmetric unit are independent variables),
it is possible to reach the global minimum corresponding to the best possible fit
to the data provided that the temperature reduction is sufficiently slow and the
number of moves explored at each temperature is sufficiently large. If the
asymmetric unit of the structure consists of a single isolated molecule, for which
interatomic connectivity is well-established and the bond lengths and angles are
particularly well defined (e.g. Harris and Tremayne 1996; Harris et al. 1994;
Shankland et al. 1998; David et al. 1998; Pagola et al. 2000), then only a few
variables are required in the SA minimization in order to solve the structure.
The required parameters are those defining the position and orientation of the
molecule as well as the torsion angles. The bond lengths and angles can be fixed
at typical values. However, such an approach may be insufficient if the asym-
metric unit consists of more than a single molecule. For each possible con-
formation and position of one molecule there exist numerous possible
conformations and positions of the other. As a result, there may be many more
local minima in the goodness-of-fit function that are sufficiently deep to be
confused with the global minimum. In such circumstances, a final discrimina-
tion between different fits of the calculated and observed data is essential before
refinement can be expected to yield the correct structural model. Such dis-
crimination may require bond lengths and angles to be varied independently in
addition to torsion angles. The presence of ionic bonding between separate
moieties in the structure may be particularly troublesome since such bonding is
stronger than van der Waals' forces and can perturb the internal dimensions of
covalently bonded moieties compared with the case of two or more neutral
molecules. The examples of structure determination we have presented here
constitute a particularly severe test of the methodology in the context of these
difficulties because the asymmetric unit comprises several independent moieties
that interact via both van der Waals forces and ionic bonding. In the case of
(PEO)3: LiN(SO2CF3)2 it was sufficient to set all similar bond lengths, bond
angles and torsion angles in the imide anion as single variables while changing
only the conformation of the polymer chain with fixed bond lengths and angles.
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However, for PEO: NaCF3SO3 the correct model was found only when all
stereochemical restraints were removed and all parameters were varied in a
random fashion.

The solution of structures containing different atoms of comparable scat-
tering power (e.g. C, N, O) is often regarded as presenting the greatest challenge.
This task is readily tackled for molecular structures by the SA approach
described in this chapter. The successful structure solution of compounds
requiring the independent variation of 79 parameters and up to 26 symmetry-
unrelated non-hydrogen atoms has been demonstrated. The upper limit for
structure solution by whole-pattern fitting using SA minimization combined
with a stereochemical description of the problem should be comparable to the
limit of structural complexity found for Rietveld refinement.
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Chemical information and intuition in solving
crystal structures

Lvnne B. McCusker and Christian Baerlocher

17.1 Introduction

In attempting to solve a structure from powder diffraction data, we tend to
become so absorbed in the details of the diffraction pattern that we forget that
this is not the only information we have on the material under investigation.
In general, we know quite a lot more. For example, we almost always know
its approximate chemical composition and its relevant physical properties
(e.g. optical, magnetic, electronic, catalytic, thermal), and we know the struc-
tural features of related compounds. We may also have the results of other
(non-diffraction) experiments, such as IR, UV-visible, EXAFS, NMR and/or
ESR spectroscopy, electron microscopy or theoretical calculations, at our
disposal.

In the early days of single-crystal structure analysis, it was common practice
to use such information in the structure solution process. However, as crys-
tallographic methods became more and more powerful, access to increased
computing capacity became routine, and instrumentation improved, this
additional crystal chemical information became redundant and fell into disuse.
Now, in the world of structure analysis of polycrystalline materials, where the
information content of the powder pattern is significantly lower than that of
a single-crystal dataset, we have to reinstate the use of such information. It
can mean the difference between solving and not solving a structure.

Crystal chemical information can be put to good use at several stages of the
structure determination process. In the following sections, examples of how
chemical information (and intuition) can facilitate structure determination and
refinement are discussed. Many of the examples are taken from the realm of
zeolite structures, because that is our particular sphere of interest and because
these structures quite often challenge the limits of powder methods, but the
principles involved can be applied to any class of material. The order of pre-
sentation parallels that of the structure solution process: the collection of the
data, the determination of the unit cell and space group, the generation of an
approximate model, the completion of the model, the refinement of the struc-
ture, and the evaluation of the final structure.
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17.2 Data collection

Even at the data collection stage (see Chapter 6), crystal chemical information
can play an important role. The optimization of data-collection parameters
depends significantly on the composition and nature of the sample. For
example, if the material is strongly absorbing, reflection rather than transmis-
sion geometry should be used in the laboratory, or specific wavelength(s) should
be selected or avoided at a synchrotron, or the possibility of using neutrons
should be considered. If a sample contains a potential anomalous scatterer,
absorption edge experiments at a synchrotron may be advantageous. If the
material shows a tendency towards preferred orientation or the compound
contains both light and heavy atoms, a neutron experiment may be indicated. If
the sample is highly crystalline and displays sharp diffraction peaks in the
laboratory, a synchrotron or high-resolution neutron experiment might pro-
duce even higher quality data and thereby provide more information.

It is not the purpose of this chapter to delve into the many aspects of data
collection optimization, but the few examples given above should serve to sug-
gest that a little thought given to the diffraction experiment itself is worthwhile.
The selection of optimal data collection parameters for the specific material
under investigation can only have a beneficial effect on the quality of the data
that emerges, and this may prove to be critical in subsequent structure analysis.

Example 1. A prime example of the importance of carefully selected data
collection conditions was illustrated in the structure solution of L^TisAl^C^
(Morris et al. 1994). With 60 atoms in the asymmetric unit, this is one of the
most complex structures solved from powder data to date, and the availability
of both synchrotron and neutron data was essential to the structure solution
and subsequent refinement.

17.3 Indexing and choice of space group

Indexing programs (see Chapter 7) have become so reliable in recent years that
if accurate peak positions are input, the correct unit cell is generally found
relatively easily. However, in difficult cases, the inclusion of density information
can help the programs and can be used as a check (the cell volume should
correspond to an integral number of formula units) of an indexing solution
(Louer 1992).

The determination of the correct space group, however, is rarely unambig-
uous, and this can be a serious limitation in structure analysis using powder
diffraction data. The number of probable space groups is usually limited by the
geometry of the unit cell (though lower symmetries are always possible), but
overlap of reflections often prevents systematic absences from being established
satisfactorily, and intensity symmetry of potentially equivalent reflections
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cannot be evaluated. It is important to keep the uncertainty of the assumed
space group in mind in subsequent steps. Independent experimental data can be
extremely useful in narrowing the choice. For example, electron diffraction or
solid state NMR can provide additional symmetry information, or physical
properties can limit the choice (e.g. an optically active crystal or one displaying
piezoelectric properties cannot be centrosymmetric). Similarly, for a molecular
crystal, consideration of the symmetry of the molecule and possible packing
arrangements can eliminate some space groups. For example, given a hexagonal
unit cell with no observable systematic absences, 16 space groups are equally
probable (and 17 more only have conditions on OO/ reflections and these might
easily be obscured). However, if the maximum symmetry of the molecule is
three, and there are two molecules per unit cell, nine of the sixteen space groups
can be eliminated immediately.

Example 2. In the structure determination of ((CH3)4N)2Ge4MnSio, Achak
and co-workers (1995) had eight body-centred, tetragonal space groups to
choose from. They used the knowledge that the Ge and Mn would probably be
tetrahedrally coordinated to S to limit the choice to the three space groups
containing 4 axes.

17.4 Model building

The classical approach to solving the structure of a polycrystalline material is to
build a physical model that is consistent with all the information known about
the compound. This model is then used to simulate a powder diffraction
pattern for comparison with the measured one. A multitude of information
(see Table 17.1 for a short list of potential sources) is used, some of it intuitively,
in this process. It is difficult, if not impossible, to describe the complex thought
processes that lead to the production of a feasible structural model, but perhaps
the few examples below can illustrate some of the more tangible aspects of this
approach to structure determination. Although model building is inefficient and
prone to failure, it is often the only option available for complex structures and
therefore deserves special attention.

Example 3. Cyclo-j3-peptide (Seebach et al. 1997). A series of cyclic /3-peptide
tetramers were synthesized, but because they are virtually insoluble in both
organic solvents and water, single crystals could not be grown. All were found
to be thermally stable up to at least 300°C. These properties were thought to
be due to strong intermolecular hydrogen-bonding. The powder diffraction
pattern of the (R, R, S, S) stereoisomer derived from 3-aminobutanoic acid (see
Fig. 17.1 (a)) could be indexed on a monoclinic unit cell (a= 12.69 A, b = 4.98 A,
c = 18.64 A and (3 = 129.7 ° volume = 906 A3), and the systematic absences were
consistent with the space group P2\jc. However, the quality of the data did not
allow solution by Direct methods.
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Table 17.1 Some sources of information useful in model building

Source Information

Powder diffraction pattern

Electron microscopy

Structures of related compounds

Density
NMR

Physical measurements

Dimensions of the unit cell
Possible symmetry
Intensities for checking a simulated pattern
Morphology
Dimensions of the unit cell
Possible symmetry
Presence/absence of faulting
Interatomic distances
Coordination numbers and geometries
Structural subunits

(e.g. SiO4 tetrahedron, phenyl ring, peptide
linkage)

Number of formula units per unit cell
Connectivity
Symmetry
Optical activity
Magnetic behaviour
Conductivity
Elasticity
Thermal stability
Sorption capacity

The volume of the unit cell and the size of the molecule (24 non-hydrogen
atoms at c. 15-20 A3 per atom) suggest that there are probably two molecules
per unit cell. Since the geometry of the peptide linkage and the configurations of
the four asymmetric C atoms were known, building models of the molecule was
straightforward. The short axis dictates that the disk-shaped molecules lie
approximately perpendicular to the ft-axis, and the symmetry elements of the
space group further require that the molecules lie on a centre of inversion.
Rotation of the molecule around the inversion centre is sterically hindered by
the methyl groups of neighbouring molecules (Fig. 17.1(c)), but there are two
possible orientations of the molecule (related to one another by a rotation of
c. 90°) and four conformations of the ring that are consistent with the chemical
and symmetry information. Only one combination yields a powder diffraction
pattern that approximates the observed one. The molecules are stacked in such
a way that all NH groups form a hydrogen bond with a CO group of a
neighbouring molecule (Fig. 17.1(b)). In this case, only a limited number of
models were feasible, and the powder pattern could be used to distinguish the
correct one. Using this model as a starting point, the finer details of the structure
were determined via Rietveld refinement.
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Fig. 17.1. (a) stick drawing of the (R,R,S, S) stereoisomer of the /?-peptide tetramer
derived from 3-aminobutanoic acid, (b) [0 1 0] projection of the refined structure, and (c)
[101] projection (methyl groups deleted for clarity) showing the stacking of the
molecules and the hydrogen bonding between them.

Example 4. Zeolite A (Breck et al. 1956). Zeolite A was one of the first zeolites
to be synthesized in the laboratory. Initial characterization of the polycrystal-
line material yielded the information given in Table 17.2. The dehydration,
sorption and ion-exchange properties indicated that it was, in fact, a zeolite, and
using all the information and their knowledge of other zeolite crystal structures,
Breck and co-workers were able to build a model of the framework structure.

The chemical formula per unit cell (Na^Al^Si^CUg^TtkO) could be cal-
culated from the chemical composition and density information. From other
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Table 17.2 Initial characterization of zeolite A

Chemical composition
Density
Indexing

Dehydration
Sorption
Ion exchange

NaAlSiO4 • 2.25H2O
1.99g/cm3

Primitive cubic unit cell with
a— 12.3 A (no systematic absences)

Reversible
c.4.5 A pore openings
Na+ easily exchanged

Fig. 17.2. The framework structure of the aluminosilicate zeolite A showing the cubic unit
cell, the eight rings on the faces (thick lines), and the connections (thin lines) between them.

zeolite structures, it was known that Al and Si are tetrahedrally coordinated
(therefore called T-atoms) to bridging oxygens to form a three-dimensional
framework structure. It could be assumed that the X-ray diffraction experiment
would not distinguish between Al and Si, so they could be treated as being
equivalent. The sorption data were indicative of an eight-ring (eight oxygen and
eight T-atoms) pore opening. Given the cubic symmetry, the size of the unit cell,
the number of T-atoms per unit cell, the size of an eight-ring, and the requirement
that the aluminosilicate framework be three-dimensional and four-connected,
the number of possible structures is extremely limited. Only by placing the eight-
rings on the faces of the cubes and connecting them to one another via oxygen
bridges, can a model consistent with all the information be built (see Fig. 17.2).

Another way of looking at this puzzle would be to use the symmetry infor-
mation for Pntim in the International Tables for Crystallography (Hahn 1983).
Assuming that the 24 T-atoms in the unit cell are equivalent, they must lie on
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a mirror plane, and of the three possibilities (at x = 0, at x= 1/2, and along
the diagonal x = y), only one set of symmetry equivalent coordinates (0,y,z)
generates T-atom positions consistent with tetrahedral geometry, eight-ring
channels, and a three-dimensional, four-connected net.

Example 5. Tetramethylammonium gismondine (Baerlocher and Meier
1970). The powder pattern of this zeolite, synthesized in the presence of
tetramethylammonium (TMA + ) ions, could be indexed on a body-centred,
tetragonal unit cell with a= 10.46 and c = 9.73 A. Chemical analysis indicated
that there were four TMA+ ions per unit cell, and given the symmetry and size
of that cell, there was only one sensible way of arranging them: at 0 0 0,0 1/2 1/4,
1/21/21/2 and 1/203/4 (see Fig. 17.3(a)). This arrangement yields an N-N
distance of 5.77 A, which agrees well with the 5.53 A found in (CHs^NCl, but
which excludes the possibility of the framework atoms being located between
neighbouring TMA+ cations. That is, the aluminosilicate cage around each
cation must have windows, presumably eight rings, arranged in a tetrahedral
fashion. This reasoning leads automatically to the framework structure shown
in Fig. 17.3(b).

Example 6. Some complex zeolite structures. The zeolite structure literature is
rich in impressive examples of model building, starting with the very early single
crystal studies of cancrinite, natrolite and sodalite by Pauling (1930a, b) and
of analcime, edingtonite and thompsonite by Taylor and co-workers (Taylor
1930; Taylor and Jackson 1933; Taylor et al. 1933). Some more recent
examples that are too complex to describe in detail here but that provide some

Fig. 17.3. (a) Body-centred, tetragonal arrangement of tetramethylammonium ions
(TMA+) in the unit cell of TMA-gismondine. The lines show the closest contacts to the
central ion and indicate where windows in the aluminosilicate framework must be.
(b) The aluminosilicate framework (bridging oxygens have been omitted for clarity) built
around the TMA + ions.
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thought-provoking reading, include the framework structures of ZSM-5 with 38
framework atoms in the asymmetric unit (Flanigen et al. 1978; Kokotailo et al.
1978), EU-1 with 31 (Briscoe et al. 1988), CIT-1 with 24 (Lobo and Davis 1995),
NU-87 with 21 (Shannon et al. 1991) and VPI-8 with 14 (Freyhardt et al. 1996).
The number of framework atoms in the topological (highest possible) symmetry
are included as an indication of the complexity involved, but the real structures
often deviate significantly from this high symmetry and usually contain addi-
tional non-framework atoms as well.

17.5 Computer generation of structural models

An obvious way to expedite the model building process would be to exploit the
power of a computer, and, in fact, several programs have been developed with
this in mind. These can be of tremendous assistance to a model builder. For
example, computer graphics software such as Cerius2 (Accelrys) can be used to
build a molecule, optimize its geometry, put it in a unit cell with the appropriate
symmetry, optimize its packing, and monitor the effect of various manipula-
tions on the simulated powder diffraction pattern.

Other programs have been designed to generate models based on some set of
criteria. Bennett and Shomaker (Bennett 1988), Brunner (1990), Treacy, Rao and
Riven (1993), Akporiaye and Price (1989), and Shannon (1993) have all developed
approaches to zeolite structure solution using this idea. The models generated
are then evaluated for consistency with other experimental information by hand.

17.6 Using chemical information actively in an automated structure
determination process

The use of computers to generate structural models for organic compounds has
been developed further in the Monte Carlo, simulated annealing and genetic
algorithm approaches, which are described in detail in separate chapters
(see Chapters 15 and 16). These methods tackle the problem of structure
solution from powder data in direct (i.e. model-building space) rather than
reciprocal space. Structural models are generated according to criteria derived
from chemical information, and the diffraction pattern is then considered in an
automatic evaluation process.

In these methods, chemical information is used actively, and the powder
diffraction data passively (in contrast to conventional crystallographic meth-
ods). The obvious question is whether it is possible to use both the chemical and
the diffraction data actively (i.e. to incorporate the model builder's knowledge
into an algorithm that also uses the information in the diffraction pattern).
While it is perhaps difficult to convert the intuitive thought processes and all the
knowledge of an experienced model builder into the strict logic of a computer
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program, some quantifiable characteristics (e.g. chemical composition, expected
coordination geometries and typical bond distances and angles) would seem to
lend themselves to such an approach.

Of course, once such knowledge is incorporated into a structure determina-
tion procedure, that procedure becomes specific to the selected class of mate-
rials, so care must be taken that the information is, in fact, relevant to the
sample under study. An elegant way of introducing such information into a
structure determination procedure would be to use a Bayesian approach (see
Chapters 8 and 14), where the data can be included as 'prior information' in the
same way that the positivity of electron density is. However, the encoding
required is far from trivial.

Another possibility is to tailor a program to the class of materials of interest.
This has been done for zeolites and zeolite-like molecular sieves in the program
focus (Grosse-Kunstleve et al. 1997). The input to the program includes the
chemical composition per unit cell and minimum interatomic distances for all
atoms. This information is then used by the program to search for possible
framework structures. To start with, random phases are assigned to the
observed structure factors (obtained from extracted integrated intensities) to
generate an electron density map, which is then interpreted automatically using
the chemical information. A new phase set is calculated from the structure or
fragment of the structure resulting from this interpretation and a Fourier
recycling procedure started. Once the phases have converged, a new set of
starting phases is generated and the procedure repeated. A flow diagram of the
program is given in Fig. 17.4.

The key to the success of focus lies in the search for a three-dimensional,
four-connected net (framework topology) with appropriate interatomic dis-
tances within each electron density map generated. Even if some of the
reflection intensities are wrong (because of reflection overlap) and some of the
phases are wrong (because they have been generated randomly), the electron
density map is likely to have some indication of the correct structure. Given
the information that a framework structure must be present, weaker peaks
that complete a net can be included in a model while stronger peaks that do
not can be ignored. Of course, the prerequisite is that the phase set be at least
partially correct, so the generation of many starting phase sets is an integral
part of the program. The Fourier recycling loop is also an essential part of
the procedure, since it allows a more correct phase set to be generated from
different starting points. Alternating between map interpretation in terms of
atoms (based on peak height and interatomic distances) and map inter-
pretation in terms of the largest framework fragment found has proven to be
the most effective strategy.

The framework topology search, based on a backtracking algorithm, is
exhaustive. Each time an electron density map is generated, possible topologies
are sought, and any found are written to a file. These topologies are then analysed
for their uniqueness and the one that occurs most frequently is generally the
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Fig. 17.4. Flow diagram for the program focus.

correct one (assuming the space group is correct). The program has been applied
successfully to many test examples (Grosse-Kunstleve 1996; Grosse-Kunstleve
et al. 1999), and to several real structure solutions. The latter include the zinco-
silicate VPI-9 (seven T-atoms in the asymmetric unit of the topological unit cell
and 15 T-atoms and 30 oxygens in the true cell, McCusker et al. 1996), the high-
silica zeolites SSZ-44 (eight T-atoms, Wagner et al. 1999) and MCM-61 (three
T-atoms, Schantz et al. 1999), and the aluminophosphate A1PO4-53(C) (six
T-atoms, Kirchner et al. 2000). This is one way of incorporating chemical
knowledge into an automated procedure. A similar approach using different cri-
teria for other classes of structures can be imagined, but has not yet been realized.

17.7 Recognizing a structure solution

One of the difficulties in solving a structure from powder data is in recognizing
the solution when it is offered. Direct methods applied to the limited set of
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reflection intensities that can be extracted reliably from a powder pattern are
likely to produce a solution with an approximately oriented, distorted fragment
of the structure, but the small displacements of the atoms from their true
positions can easily lead to bonds being drawn where there are none and bonds
being omitted where they are present. Furthermore, atoms might be missing or
false peaks present. This combination can disguise the correct solution beyond
recognition, and standard figures-of-merit are not reliable indicators (see,
however, Chapters 10 and 11 on Direct methods programs written specifically
for powder data). How then should possible solutions be analysed in order to
identify feasible candidates?

Again, the answer lies in the chemistry of the material and consistency with
other experimental results, but there is no foolproof recipe. Obviously, the
solution should reveal the positions of the heavier atoms. The interatomic
distances must make sense. Peak heights should approximate the relative
scattering powers of the atoms. The coordination numbers may be too low,
because some atoms are missing, but shouldn't be too high. The geometry
should be within reason, but some deviation due to the approximate nature of
the model should be tolerated. Missing atoms should be anticipated (e.g. if a
benzene ring is expected, perhaps only three or four of the C's will appear, and
these might not be neighbouring ones). If the material is a zeolite, channels or
cavities should be around the points of highest symmetry (Brunner 1990). It is
possible that no single solution is correct, but comparison of several models may
reveal common features that can be developed further using Fourier methods.

This may all seem very vague and unsatisfactory to the reader. That is because
one cannot, by definition, describe intuition. All the pieces of information may
be present, but it still takes an intuitive leap on the part of the crystallographer
to recognize the solution. In other words, flexible thinking is essential.

Example 7. The structure of the zeolite RUB-10 was determined from low-
resolution (2 A) powder diffraction data by Gies and Rius (1995). They applied
a Patterson search technique (see Chapter 13), using a tetrahedral Sis fragment
as the search model, and the best solution produced the electron density pro-
jection shown in Fig. 17.5. Without any knowledge of zeolite structures, the
interpretation of that map would be virtually impossible, but, because of their
experience with these structures, they were able to discern two potential zeolite
framework fragments (A and A'). Although each produced a framework, only
A had a reasonable geometry, and subsequent refinement showed this to be the
correct structure. The amount of imagination and intuitive thinking required
for this structure solution is readily apparent.

17.8 Interpretation of Fourier maps

Once an approximate model has been deduced, it often needs to be completed,
and this is normally done using Fourier techniques. Although difference
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Fig. 17.5. Contour map of the (0 1 0) electron density projection obtained for RUB-10
from the result of a Patterson search calculation. Possible interpretations consistent with
zeolite chemistry are indicated (A and A'). Reprinted with permission from
Z. Kristallogr., 1995, 210, 476. Copyright 1995, R. Oldenbourg Verlag, Miinchen.

electron density maps can be generated from powder data in the same way as
they can from single crystal data, they tend to be diffuse and require inter-
pretation. It should always be borne in mind that these maps are doubly biased
towards the model used to generate them. Not only are the phases for the
observed F's taken from the model (as they are in the single-crystal case),
the partitioning of the intensities of overlapping reflections is also assumed to be
the same as for the model. This partitioning and the inexact scaling of the
observed to the calculated pattern causes the peaks in the electron density map
to be less well-defined and poorly resolved. The electron density often appears
as a diffuse cloud rather than as discrete peaks, so the results of peak-finding
routines should be treated with caution. It is advisable to look at a three-
dimensional contour map rather than at a list of peak positions. An even better
approach is to perform a maximum entropy reconstruction instead of a
Fourier synthesis. Such maps are generally less noisy and more definitive than
their Fourier counterparts. Examples of their successful application include
the location of non-framework species in zeolites (Papoular and Cox 1995;
Hasegawa et al. 1999) and charge density studies of a series of fullerenes
(Takata et al. 1999) and of the Laves phase MgCu2 (Kubota et al. 2000).
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Fig. 17.6. A single contour level of the difference electron density within the channels of
the zeolite-like silicoaluminophosphate SAPO-40 (bridging oxygens have been omitted
for clarity). The form indicates clearly how the tetrapropylammonium ion is oriented,
but the positions of the individual atoms are not resolved into discrete peaks.

Example 8. For zeolites, the framework structure is often known, but the
location of non-framework species in the channels and cavities usually has to be
determined from difference Fourier maps. In Fig. 17.6, a single contour level of
the difference electron density found in the channels of the zeolite-like silico-
aluminophosphate SAPO-40 is shown. The organic cation was known to be
tetrapropylammonium (TPA + ), and the contour map shows the location and
conformation of the molecule very clearly. However, the positions of the indi-
vidual atoms are not at well-defined maxima that would be found by a peak
search program. In this case, additional information from solid state NMR
experiments was also considered. It indicated that two of the four 'arms' of the
TPA+ ion were different from the other two, and the orientation found is
consistent with that observation: two propyl groups point towards 'pockets' in
the framework and two point towards open channels.

A further problem that can lead to confusion in the interpretation of an
electron density map is that of disorder. Atoms not found in the initial structure
solution may well be disordered and therefore appear as weaker peaks. For
example, a functional group in an organic molecule may assume two different
orientations in a random fashion, waters of crystallization may be statistically
distributed over several sites, or non-framework atoms of a zeolite may not obey
the higher symmetry of the framework. Such cases make the interpretation of a
difference Fourier map difficult and require some imagination (and additional
knowledge) on the part of the interpreter.
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Fig. 17.7. A single contour level of the difference electron density within the medium-
sized cages of the zeolite EMC-2 (bridging oxygens omitted for clarity). The horizontal
mirror plane causes a mirror image to be created, so the cloud is almost twice as thick as
the 18-crown-6 molecule.

Example 9. The zeolite EMC-2 is synthesized in the presence of 18-crown-6
ether molecules, and because these molecules have a strong structure directing
effect in the synthesis, it is of interest to know where they are located within the
framework. The difference electron density in the medium-sized cage of EMC-2
is shown in Fig. 17.7. The electron density cloud is almost twice as high as the
molecule, but two molecules cannot sensibly be so close to one another. The
problem is that the electron density lies on a mirror plane. Although only one
molecule is in fact present (on one side of the mirror plane or the other),
the mirror plane automatically generates a mirror image. In other words, the
non-framework positions can only be described in the higher symmetry of the
framework structure and they must be assumed to be statistically distributed
over the two positions (i.e. half occupied).

17.9 Elucidation of refinement difficulties

It is not the purpose of this book to go into the details of Rietveld refinement,
but a structure cannot be considered solved until it has been satisfactorily
refined. Inadequacies in the structural model often remain undetected until
a refinement is attempted. If a structure does not refine well, it may be because
there is something wrong with the data (preferred orientation, non-random
orientation due to an insufficient number of crystallites in the beam, absorption
effects, instability in the beam, etc.), but it is more likely to be due to the
(incorrect) model.

One of the first things to check is the space group. As noted earlier, the
determination of the correct space group is notoriously difficult with powder
data (Markvardsen et al. 2001; Chapter 8), so alternatives often need to be
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tested. If the calculated diffraction pattern approximates the observed one, but
refinement does not progress beyond a certain point (yielding relatively small
but significant discrepancies between observed and calculated patterns), or if
interatomic distances deviate significantly from known values, a subgroup of
the assumed space group may be indicated.

A second potential source of error is the chemistry assumed. Although the
structures of related materials may serve as very useful guides in the structure
solution process, they can also lead us astray. A new material always has the
potential to surprise us. Similarly, results of non-diffraction experiments may be
inaccurate (e.g. chemical analysis), based on solution measurements (e.g. optical
activity), or misinterpreted (e.g. EXAFS or NMR), so a certain amount of
caution is recommended. All assumptions need to be re-evaluated if refinement
does not progress satisfactorily.

Example 10. The aluminophosphate VPI-5 was thought to have a zeolite-like
framework structure with tetrahedrally coordinated Al and P atoms, and this
prejudice hindered refinement of the structure for several years. One of the Al
atoms was eventually shown to be octahedrally coordinated to four framework
oxygens and two water molecules (McCusker et al. 1991).

17.10 Evaluation of the final structure

The final test as to the validity of a structural model is that it accounts for all of
the data available. Not only must the calculated powder diffraction pattern
match the observed one, the structure must also be consistent with any spec-
troscopic data (e.g. IR, Raman, NMR, ESR, Mossbauer, EXAFS) and with the
physical properties of the material. Furthermore, the structure should be
compatible with the structures of related materials. Any unusual features should
be given special attention, and, if possible, further experiments devised to
confirm or refute them.

17.11 Conclusion

It is clear that the use of crystal chemical information can have a significant
impact upon the structure determination process, whether it is used at the data
collection stage, in the critical evaluation of the final structure, or in any of the
steps in between. Its exploitation is highly recommended. Chemical intuition is a
less tangible concept. The human thought process that makes the key connec-
tion between seemingly unrelated facts, that we call intuition, does not just
happen. Just as lightning does not strike 'out of the blue', intuition requires
extensive groundwork and considerable devotion to the problem. While a
structure solution via a computer program is fast, comfortable and usually quite
useful, one requiring intuitive intervention also leaves the crystallographer with
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a most satisfying sense of accomplishment. Fortunately, there are still many
structures that challenge the limits of our computer programs, so intuition will
continue to play a critical role in structure determination from powder dif-
fraction data.
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Index of symbols

basis vectors of the direct lattice
basis vectors of the reciprocal lattice
lengths of the basis vectors of the direct lattice
lengths of the basis vectors of the reciprocal lattice
isotropic atomic displacement (Debye-Waller) factor
covariance matrix
interplanar spacing of neighbouring (hkl) planes
Ijd
normalized structure factor
modulus of Eb

atomic scattering factor
real part of the anomalous scattering factor
imaginary part of the anomalous scattering factor
sample line-broadening function
structure factor corresponding to the Bragg reflection hkl
modulus of _Fh

Smith & Snyder figure of merit for an indexing solution
instrumental line-broadening function
indices of the Bragg reflection from the (hkl) planes
peak-shape function
intensity of the Bragg reflection hkl
scale factor
de Wolff figure of merit for an indexing solution
Patterson function at point xyz
pole figure value for reflection hkl at sample orientation (x,4>)
104A/L or \/fM
position vector of a point xyz in the unit cell
reciprocal lattice vector with coefficients hkl
profile _R-value (agreement factor)
weighted profile _R-value (agreement factor)
R-value based on Bragg intensities
_R-value based on structure factors
temperature
unitary structure factor
modulus of t/h

cell volume of the direct lattice
cell volume of the reciprocal lattice
weighting factor
fractional coordinates of a point in the unit cell
intensity at point i in a powder diffraction pattern
number of formula units per unit cell
number of formula units in the asymmetric unit



INDEX OF SYMBOLS

interaxial angles of the direct lattice
interaxial angles of the reciprocal lattice
mixing parameter in the pseudo-Voigt peak-shape function
diffraction angle
Eulerian angles
wavelength
linear absorption coefficient
(electron) density at point r in the unit cell
standard deviation
phase angle of Fh or Eb
sample rotation angle (for texture measurements)
sample tilt angle (for texture measurements)
goodness of fit
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Index of abbreviations

e.s.d. estimated standard deviation
D2B high resolution powder diffractometer at ILL
DM direct methods
ECC error correcting code
ESR electron spin resonance
ESRF European Synchrotron Radiation Facility (Grenoble, France)
EXAFS extended X-ray absorption fine structure
FWHM full width at half maximum
GA genetic algorithm
HOLZ higher order Laue zones
HRPD high resolution powder diffractometer at RAL
ILL Institut Laue Langevin (Grenoble, France)
IMF image-seeking minimum function
IRF instrument resolution function
LLG log-likelihood gain
ME maximum entropy
NIST National Institute of Standards and Technology
NMR nuclear magnetic resonance
NSLS National Synchrotron Light Source (Brookhaven, USA)
ODF orientation distribution function
RAL Rutherford Appleton Laboratory (Oxfordshire, UK)
SA simulated annealing
SDPD structure determination from powder diffraction data
SMF symmetry minimum function
SG space group
SRS Synchrotron Radiation Source (Daresbury, UK)
UKAEA UK Atomic Energy Authority
VCT variable counting time



Computer programs

ALLHKL Intensity extraction
Pawley, G. S. (1981). J. Appl. Crystallogr., 14, 357-361

BEARTEX Texture analysis using the WIMV method
Wenk, H.-R., Matthies, S., Donovan, J. and Chateigner, D. (1998).
/. Appl. Crystallogr., 31, 262-269
http: //eps. berkeley. edu/~wenk/TexturePage/beartex. htm

CIFTOOLS Working with pdCIF files
Toby, B.
http://www.ncnr.nist.gov/programs/crystallography/software/cif/

CMPR Multipurpose program for displaying diffraction data, indexing, peak fitting
Toby, B.
http://www.ncnr.nist.gov/programs/crystallography/software/cmpr/

CPSR Rietveld refinement
Andreev, Y. G., Lundstrom, T. and Sorokin, N. I. (1995). Nucl. Instr.
and Meth. in Phys. Res., A354, 134-138

CRYSFIRE A collection of indexing programs
Shirley, R.
http://www.ccpl4.ac.uk/solution/indexing/

DASH Structure solution—simulated annealing
David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell,
W. D. S. and Taylor, R. (2001). DASH User Manual,
Cambridge Crystallographic Data Centre, Cambridge, UK
http://www.ccdc.cam.ac.uk/products/powder_diffraction/dash/

DBWS Rietveld refinement
Wiles, D. B. and Young, R. A. (1981). /. Appl. Crystallogr., 14, 149-151
http://www.physics.gatech.edu/downloads/young/download_dbws.html

DICVOL91 Indexing
Boultif, A. and Louer, D. (1991). J. Appl. Crystallogr., 24, 987-993
see CCP14 web site

DICVOL04 Indexing
Boultif, A. and Louer, D. (2004). /. Appl. Crystallogr., 37, 724-731
see CCP14 web site

DOREES Treatment of overlapping reflections
Jansen, J., Peschar, R. and Schenk, H. (1992). /. Appl. Crystallogr., 25,
237-243

ENDEAVOUR Structure solution—simulated annealing with chemical potentials
Putz, H., Schon, J. C. and Jansen, M. (1999). J. Appl. Crystallogr., 32,
864-870
http: //www. cry stalimpact. com/endeavour/

ESPOIR Structure solution—simulated annealing
Le Bail, A. (2001). Mater. Sci. Forum, 378-381, 65-70
http: //www. cristal. org/sdpd/esp oir/

ESYM Extinction symbol / space group determination
Markvardsen, A. J., David, W. I. F., Johnston, J. and Shankland, K.
Acta Crystallogr. A., 57, 47-54.
http://www.markvardsen.net/space-group.html

EXPGUI Graphical user interface (GUI) for GSAS
Toby, B.
http://www.ncnr.nist.gov/programs/crystallography/software/expgui/

http://www.ncnr.nist.gov/programs/crystallography/software/cif/
http://www.ncnr.nist.gov/programs/crystallography/software/cmpr/
http://www.ccp14.ac.uk/solution/indexing/
http://www.ccdc.cam.ac.uk/products/powder_diffraction/dash/
http://www.physics.gatech.edu/downloads/young/download_dbws.html
http://www.crystalimpact.com/endeavour/
http://www.cristal.org/sdpd/espoir/
http://www.markvardsen.net/space-group.html
http://www.ncnr.nist.gov/programs/crystallography/software/expgui/
http://eps.berkeley.edu/~wenk/TexturePage/beartex.htm
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EXPO Structure solution—direct methods for powder diffraction data
(includes intensity extraction and treatment of overlapping reflections)
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B. Cascarano,
G. L., Giacovazzo, C., Guagliardi, A. Moliterni, A. G. G., Polidori, G.
and Rizzi, R. (1999). J. Appl. Crystallogr., 32, 339-340
http://www.ic.cnr.it/

EXTRA Intensity extraction
see EXPO

FIPS Treatment of overlapping reflections
Estermann, M. A. and Gramlich, V. (1993). /. Appl. Crystallogr., 26,
396^04

FOCUS Zeolite-specific structure determination
Grosse-Kunstleve, R. W., McCusker, L. B. and Baerlocher, Ch. (1999).
J. Appl. Crystallogr., 32, 536-542

FOX Free objects for crystallography: a modular approach to ab initio
structure determination from powder diffraction
Favre-Nicolin, V. and Cerny, R. (2002). /. Appl. Crystallogr., 35, 734-743.
http://objcryst.sourceforge.net/Fox/

FullProf Rietveld refinement
J. Rodriguez-Carvajal, Laboratoire Leon Brillouin (CEA-CNRS)
http://www-llb.cea.fr/fullweb/fp2k/fp2k.htm

GSAS Rietveld refinement
(includes intensity extraction and single-crystal refinement)
Larson, A. C. and Von Dreele, R. B. (1987). GSAS, Los Alamos
National Laboratory Report No. LA-UR-86-748
http://www.ccpl4.ac.uk/solution/gsas

ITO Indexing
Visser, J. W. (1969). J. Appl. Crystallogr., 2, 89-95
see CRYSFIRE entry for download details

LSQPROF Intensity extraction
Jansen, J., Peschar, R. and Schenk, H. (1992). J. Appl. Crystallogr., 25,
231-236

MAUD Materials analysis using diffraction (includes texture analysis)
Lutterotti, L. and Bortolotti, M. (2003). lUCr: Compcomm Newsletter,
1, 43-50
http://www.ing.unitn.it/~maud/

MICE Structure solution—maximum entropy
Gilmore, C. J., Bricogne, G. and Bannister, C. (1990). Acta Crystallogr.,
A46, 297-308

NBS*AIDS83 Aid to space group determination
Mighell, A. D., Hubbard, C. R. and Stalick, J. K., "NBS*AIDS80:
A FORTRAN Program for Crystallographic Data Evaluation."
US Technical Note 1141, National Bureau of Standards, Washington,
DC, 1981

PowderSolve Structure solution—simulated annealing
Engel, G. E., Wilke, S., Konig, O., Harris, K. D. M, and Leusen, F. J. J.
(1999). J. Appl. Crystallogr., 32, 1169-1179
http://www.accelrys.com/products/mstudio/modeling/crystallization/
reflexplus.html

POWSIM Structure solution—direct methods
see DOREES and LSQPROF

PSSP Simulated annealing approach to structure solution
http://powder.physics.sunysb.edu/programPSSP/pssp.html

SHELX Single-crystal structure determination
Sheldrik, G.
http://shelx.uni-ac.gwdg.de/SHELX/

SIMPEL Direct methods for powder diffraction data
Jansen, J., Peschar, R. and Schenk, H. (1993). Z. Kristallogr., 206, 33-43

SIRPOW see EXPO

http://www.ic.cnr.it/
http://www-llb.cea.fr/fullweb/fp2k/fp2k.htm
http://www.ccp14.ac.uk/solution/gsas
http://www.ing.unitn.it/~maud/
http://www.accelrys.com/products/mstudio/modeling/crystallization/reflexplus.html
http://www.accelrys.com/products/mstudio/modeling/crystallization/reflexplus.html
http://objcryst.sourceforge.net/Fox/
http://powder.physics.sunysb.edu/programPSSP/pssp.html
http://shelx.uni-ac.gwdg.de/SHELX/
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TOPAS Profile analysis, Rietveld refinement, structure solution, intensity extraction,
indexing
Coelho, A. A. (2000). J. Appl. Crystallogr., 33, 899-908
http://www.bruker-axs.de/index.php7id = topas
http: //members. optusnet. com. au/~alancoelho/

TREOR90 Indexing
Werner, P.-E., Eriksson, L. and Westdahl, M. J. (1985).
/. Appl. Crystallogr., 18, 367-370
Note that TREOR90 has now been replaced by N_TREOR
http://www.fos.su.se/~pew

XLENS Structure solution—direct methods
Rius, J. (1994). XLENS. A program for Crystal Structure Determination.
ICMAB-CSIC, Catalunya, Spain

WPPF Intensity extraction
Toraya, H. (1986). /. Appl. Crystallogr., 19, 440-447

ZEFSAII Zeolite framework structure solution
Falcioni, M. and Deem, M. W. (1999).
J. Chem. Phys. 110, 1754-1766
http: //www .mwdeem. rice. edu/zefsall/

Useful web sites and mailing lists

Due to the dynamic nature of the WWW, the following addresses are subject to change

http://www.ccpl4.ac.uk/
Collaborative Computational Project Number 14
(CCP14) for single crystal and powder diffraction

http: //www. cristal. org/iniref. html
A sporadically updated SDPD Database

http: //www. crystallography. net
The Crystallography Open Database

http://www.powderdata.info/
A collection of high-quality XRPD patterns available for download

http://www.iucr.org/sincris-top/
Information server for crystallography

http://groups.yahoo.com/group/sdpd/
A mailing list dedicated to the subject of SDPD

http://lachlan.bluehaze.com.au/stxnews/riet/
A mailing list dedicated to the subject of Rietveld refinement

http://www.bruker-axs.de/index.php?id=topas
http://www.fos.su.se/~pew
http://www.mwdeem.rice.edu/zefsaII/
http://www.ccp14.ac.uk/
http://www.cristal.org/iniref.html
http://www.crystallography.net
http://www.powderdata.info/
http://www.iucr.org/sincris-top/
http://groups.yahoo.com/group/sdpd/
http://lachlan.bluehaze.com.au/stxnews/riet/
http://members.optusnet.com.au/~alancoelho/


Index

absorption
heavily absorbing materials 34, 103
X-ray 34, 103, 106, 109, 110-11, 195

agreement factors
full profile 253, 270-1, 286, 303
integrated intensity 158, 271

anisotropic thermal expansion 2, 7, 15,162-8
anomalous scattering 8, 57-9, 69, 80, 106, 308
atom-atom potential method 45
autoindexing, see indexing
axial divergence 56, 111

background 37, 53, 105-6, 142, 148, 184,
190-1, 195, 200, 271, 290

Bayesian analysis 249, 315
dealing with negative intensities 146, 148,

175
incorporating fragment information 156
space group determination 149
see also maximum entropy

beam divergence 30, 102-3

Cambridge Structural Database 10, 256, 266
chemical information 2, 7-9, 45, 252, 291,

307-8, 310, 314
chemical potentials 9
Cochran distribution 180-1
computer programs

ALLHKL 20
BEARTEX 177
BUSTER 247
CPSR 293
CRYSFIRE 133
DASH 272,281
DBWS 13
DICVOL 19, 40, 124, 126-8, 129-31
DMS 186-7
DOREES 21, 179, 185-6, 187-8
ENDEAVOUR 9
EXFFT 186-7
EXPO 12, 20, 73, 74, 192-200, 270
EXTRA 20, 192, 199
FIPS 21, 152, 208
FOCUS 9,77,315-16

FOUR 187
FullProf 56, 212
GENT AN 183
GSAS 13, 20, 56, 58, 63, 83, 293
ITO 19, 124, 125-6, 129-33
ITOF 186-7
LSQPROF 20, 179, 184-5, 186-8
MICE 20, 233, 247
MODCELL 133
MULTAN 43, 68, 81, 183
NBS*AIDS83 40
NORMAL 186-7
PIRUM 133
PowderSolve 73
POWSIM 179, 183, 186-8
PSSP 80
REDUCT 133
SHELX 73, 75, 76, 78, 81, 183, 212
SIMPEL 20, 179, 183, 186-7
SIR 71, 183
SIRPOW 43, 74, 78
SR15LS 214
TREOR 19, 69, 81, 76, 82, 124, 128-9, 130-3
TRIQUA88 187
WPPF 20
XLENS 227, 230
XTAL 69, 183, 212

coordinate transformations 292
crystallite size 33, 35, 64, 66, 83, 101-4

Darwin width 54, 57
data collection 17, 29-48, 98-117, 173, 308

constant-wavelength 113-14
counting time 33, 99, 100, 113-16, 233
external standard 124
fluorescence 52, 53, 106
high angle data 114, 200
internal standard 70, 100, 111, 121, 123-4
monochromatic radiation 35-8, 39, 43
parameters 5, 308
step size 99, 100, 113-14, 146

de Wolff figure of merit 120,121-2
detectors

analyser crystal 52, 54, 56, 58, 68, 71,
172, 173
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detectors (cont.):
CCD 26, 61
dead time 53, 105
imaging plate 53, 54, 61, 65, 99, 108, 172
parallel-blade collimator 52-3, 71
position-sensitive 34, 43^1, 53^1, 61, 99,

108,110
scintillation 52, 53

diamond-anvil cell 65
dichotomy method 126-8
differential thermal expansion 2, 7, 15, 162-8
diffraction data

background 37, 53, 105-6, 142, 148, 170,
184, 190-1, 195, 200, 271, 290

density of reflections 106, 137
number of independent reflections 40,

108, 196
resolution (dmin) 114,190, 195, 200, 219,

227-8, 233, 279
resolution (29) 33-8, 52-5, 56-7, 233

direct methods 2, 7, 15, 20, 40, 91,106, 116, 270
basics 179-81
comparision with global optimization 282
figure-of-merit 196
negative quartets 183, 195, 220, 227
normalization 181-2, 187-8, 193, 235
origin definition 179-80, 235
P10 formula 193, 195
phase extension 181, 182-3
phase refinement 219, 227
phase sum relations 179-80,183
quartets 180
structure invariants 180-3, 207
sum function 7, 211, 220-31
symbolic addition 183
tangent formula 181, 183, 219-20, 226-31,

249
triplets 180-3, 193-5
Z-function 219-21

direct-space methods 7-9, 46
model building 2, 8, 21, 76, 309-14
see also global optimization

disorder 3, 7, 24, 59, 90, 175, 230, 256, 319

electron diffraction 20, 26, 309
electron microscopy 21, 26, 64, 307
enantiomorph definition 182, 235
energy minimization 22, 25, 45
error correcting codes 247-9
Euler angles 256, 292
evolutionary strategies, see genetic algorithms
EXAFS 25, 76, 307, 321
extinction 99, 105
extinction symbol 148, 149, 150, 151

F figure of merit 39, 121
fluorescence 52, 53, 102, 106

Fourier methods 317
difference maps 7, 8, 21, 159, 177, 200,

317-20
electron density map 159, 315, 317
recycling 3, 8, 41, 92, 241, 279, 315

Friedel pairs 108

genetic algorithms 9, 22, 263-6, 314
comparison with simulated annealing 269

global optimization 3, 9, 45, 116, 249
comparison with Direct methods 282
cost function 22, 270-2
examples of local minima 279-81
global minimum 286, 299, 290
hypersurface 253
local minimum 286
multi-objective optimization
parameter bounds 258, 264, 266
pitfalls 148, 279
probability of obtaining a structure solution

258-61, 286
structural complexity 259, 287, 293, 304
swarm algorithm 273
variable parameters 9, 256-8, 288, 290-3,

300
see also genetic algorithms and simulated

annealing
grid search 9, 22, 73, 259, 261, 287

heavy atom methods 3, 106, 158, 159, 196,
202, 212, 308

hydrogen atom location 92
hyperphase permutation 153

image-seeking minimum function 211, 213,
214,215,216

indexing 5, 19, 29, 30, 37-9, 54, 61, 82, 89,
98-100, 110, 308

central zone 125
de Wolff figure of merit 120, 121-2
dichotomy method 126-8
dominant zone 121, 122, 129-30
F figure of merit 39, 121
M20 figure of merit 39, 66, 120,121-2,125-6,

128-30
Q values 39, 119, 120-1, 124-6
trial and error methods 128

instrument geometry 5, 30, 34-5, 51^1, 99, 101,
108

aberrations 32, 98, 100-1, 103, 109, 110, 111,
114, 172

axial divergence 56, 111
beam divergence 30, 102-3
Bragg-Brentano 31-2, 34-5, 39, 40-1, 43,

100, 103, 105, 111, 172
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Debye-Scherrer 43-5, 101, 110-11, 123^
diffracted beam monochromator 102
focused beam 111
focusing cameras 34, 121, 123
Gandolfi spinner 65, 109
Guinier 34, 123
Guinier-Hagg 123
incident beam monochromator 36, 43, 111
multi-layer mirrors 36, 111
parallel beam 36, 110-11
reflection mode 34, 37, 105, 109, 172, 195
sample displacement 54, 111, 172
Soller slits 111
transmission mode 34, 53, 99, 106, 172, 195

instrument related error 111-12
integrated intensities 16, 30, 100, 113, 140, 164,

174, 175, 186, 190, 271, 303
correlations 6, 51, 114, 145, 148, 156, 159,

163, 165, 174, 184
covariance matrix 142, 145, 149, 164
use of prior information 196-9, 202

intensity extraction 5-6, 20-1, 30, 61, 100, 108,
113-14, 136, 179, 183-5, 190, 191-5

equipartitioning 6, 185
LeBail method 6, 20, 41, 43, 136, 138^3,

160, 174, 175, 192, 195-8
multi-pattern deconvolution 174, 175
multiple datasets 3, 6, 164
Pawley method 6, 20, 136, 142, 143-8, 158,

160, 168, 174, 175, 179, 184, 185, 191-2,
195, 214

dealing with negative intensities 146, 163,
184-5, 192

Sayre's squaring method 151, 152, 153, 207
use of prior information 142, 156, 196-9,202

internal coordinates 256-8, 291
internal standard 70, 100, 111, 121, 123

joint refinement 13, 24-5, 196

laboratory X-ray diffraction 2, 5, 17, 22, 100,
107, 111

comparison with synchrotron X-ray
diffraction 22-5, 31, 39, 49-50

instrument geometry 34-5
instrument related error 111
instrumental resolution 30-32
monochromatic radiation 35-8

Le Bail method, see intensity extraction
limitations in structure solution 138, 148, 200
line broadening 29, 30-3, 111, 172

anisotropic 24, 33
anisotropic strain 33, 63
instrumental 30-2, 111
sample 32-3, 56, 138
size 17, 32-3, 55, 104

strain 17, 33, 55, 104
see also peak shape

Lorentz-polarization factor 114, 187

M20 figure of merit 39, 66, 120, 121-2, 125-6,
128-30

magnetic structures 88
maximum entropy 7, 25

experimental design 247-9
extrapolation 236
hyperphases and pseudophases 242-5
likelihood expressions 237-8
maps 214, 236, 241, 318
Patterson maps 151, 152, 205-7
phase permutation 236, 245, 248
phase refinement 249
positive/negative maps 94-7, 214
structure completion 159,318
tests of significance 238-40,243-5
treatment of overlapping reflections 238,

242-3, 249
'uranium atom' solution 240
see also Bayesian analysis

microcrystal 2, 20, 25-6, 32, 101
microstructure 17, 30, 32-3
molecular connectivity 256
molecular envelope 94, 250
monochromator

diffracted beam 102
incident beam 36, 43, 111

Monte Carlo method 22, 255, 287, 314
multi-layer mirrors 36, 111
multiple diffraction 105

NBS Crystal Data File 118
neutron diffraction 5, 16-18, 23-5, 41, 78, 80,

81,88,99, 100, 105-6, 110, 191,195,202,
207,208,214,281, 308

neutron facilities
ILL 24, 89
ISIS 89, 95, 214, 303
NIST 92, 93

NMR 21, 25, 77, 81, 307, 309, 319, 321
normalization

see Direct methods and synchrotron data

origin definition
see Direct methods

overlapping reflections 2, 6, 15, 20, 29-30, 50,
103, 108, 113, 137-8, 146, 149, 179,
193-5,234, 318

describing using hyperphases and
pseudophases 242-3

estimation using anisotropic thermal
expansion 7, 162-8
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overlapping reflections (cont.):
estimation using Bayesian methods 154-6
estimation using Direct methods 153, 185-6
estimation using Patterson methods 151-3,

198, 207-8
estimation using texture 7, 168-77
equipartitioning 6, 153, 185-6, 195, 204, 207,

208, 212, 245
negative quartets 185
quantification 29-30, 40, 108, 196
quartets 185, 187, 207
systematic and accidental 20, 227
triplets 185, 187, 207
use in global optimization 270-1, 303-4

parallel computing 263, 266, 269
Parseval's theorem 224, 261
pattern decomposition, see intensity extraction
Patterson methods 7, 15, 20, 41, 69, 91, 152,

153, 158,202,203,204, 317
Harker sections 41, 214
Harker vectors 41, 208, 210, 211, 214, 215
image-seeking minimum function 211, 213,

214,215,216
maximum entropy map 7, 205-7
origin peak removal 187, 198, 205, 220-3
positive/negative map 205, 207
separating overlapping reflections 188, 196,

198, 203
sharpened map 205, 212, 214
symmetry minimum function 7, 210-11, 212,

215
use of anomalous scattering 208
vector-search techniques 24, 203, 210, 220,

228, 317
Pawley method, see intensity extraction
PDF 2 database 118, 121, 124, 131, 133
peak shape 17-18, 32-3, 37, 54-6, 61, 64, 99,

139, 184-5, 191, 195, 290
half width 17, 31, 33, 37, 52, 61, 114, 138,

146, 185
instrumental contribution 30, 31, 54
peak asymmetry 56, 185
sample contribution 17, 30
see also line broadening

peak shift 71, 111
peak/background ratio 123
peak-shape function 31

fundamental parameters approach 32-3
Gaussian 17, 32-3, 54, 185
Lorentzian 17, 32-3, 54, 185
Pearson VII 33
pseudo-Voigt 17, 32-3, 61, 185

phase extension 181, 182-3
phase refinement 219, 227
preferred orientation 7, 24, 34-5, 65, 71, 101,

105, 110, 195-6

profile parameters 6, 17, 184
pseudo-translational symmetry 182, 192,

196, 197

reflection multiplicity 114,237
resonant scattering 8, 57-9, 69, 80, 106, 308
restraints, structural and non-structural 209
Reverse Monte Carlo 255
Rietveld calculation of F(obs) 140
Rietveld method 1, 13, 16-19, 25, 50, 113-14,

138, 140, 142, 148, 270-1, 286, 320

sample
absorption 65, 173, 195
capillary 34, 43, 46, 64, 65, 68, 71, 99, 102-3,

110-11, 165
characteristics 99
displacement 54, 111, 172
flat plate 108-110
grinding 83, 104-5, 170
mosaic size 105
particle statistics 64, 102, 105, 110
preparation 169
random orientation of crystallites 105
surface roughness 65, 102, 105, 114, 195
thin 34, 110
thin-film 34, 99, 100
transparency 30, 52, 54, 71, 105, 109, 111,

173
SDPD Round-Robin challenge 93
Sheldrick's rule 138
simplex method 184, 267-8
simulated annealing 9, 22, 46, 267-8, 288, 314

accept-reject criterion 289
applied to zeolites 22, 76
comparison with genetic algorithms 269
cooling schedule 262, 275, 288, 289
importance sampling 289
parallel tempering 9, 263
quenching 288

space group
determination 5, 19, 20, 29, 90, 148-51, 158,

195, 308, 320
hemihedral 231
optically active crystal 309
systematic absences 20, 29,120, 122,148, 150

structure completion 89
structure envelope 9
structures

inorganic
Ag2-3MoO3-1.8H2O 187
Ag8N16C24H24 191
A12Y4O9 23, 68
/3-Ba3AlF6 24, 36
BaBiO2.5 23
Ba4C8O20D8 191
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Ba2Mo5O17 134
Ba4Moi2O4o 191
BaTiO(C2O4)2-4.5H2O 39
BeH2 23, 68
Bi12Ni58S30 134
Bi3NF6 212-13
Bi3ReO8 21
((CH3)4N)2Ge4MnS10 309
((CH3)4N)4Ge4S10 39
2(C6H5NH3) Mo3O10 • 4H2O 187
CaTiSiO5 91, 214-16
CeH2+x 21
Cr8021 191
a-CrPO4 18, 23, 24, 66
Cs2V6016 133
Cu8N16C24H24 191
CuPt3O6 23
Eu2O(CO3)2-H2O 134
FeAsO4 91
Fe0923O 16
fullerenes 318
Ga2(HPO3)3 • 4H2O 23, 81, 92
Gd2O(CO3)2 • H2O 134
I2O4 23, 68
KA1P2O7 236
K2-3MoO10-3H2O 187
kanemite 231
LaMo5O8 23
La4Mo20O32 191
La8Si8028 191
La3Ti5Al15O37 23, 81, 93, 308
LiB2O3(OH) • H2O 34, 43
LiCF3SO3 34
LiZnPO4 75, 92
Li6Zr2O7 234, 238, 242
lithium wolframate 202
Mg(H2P04)2 134
Mg3BN3 234, 239
Mg6Co2Hu 80
MgCu2 318
MnPO4 • H2O 23, 66
(NH4)2O • 3MoO3 • H2O 187
(NH4)4[(Mo02)403](C4H305)2 • H20 34
NaAl(HPO4)2 133
NaGaH5 133
Na4Ti2Si8O22 • 4H2O 75
Nb200120P28 191
Nd(OH)2NO3 • H2O 36
Ni4Zr8P4016 191
PbC2O4 23
Pb8S16024 191
/3-plutonium 2, 15
ReF7 91
RUB-15 230-1
RUB-18 231
S8D16 191
Sb8P14048 191
Sr6Co5O15 91

SrSO4 69
Ti8K4Si12040 191
(T10 47Pb0 53)(Sri 5gCa0 42)(Cai 94T10 06)

Cu3O9 59
(Tli.72Cu0.28)Ba2(Ca1.86Tlo.i4)Cu3010 59
tinticite 3
tourmaline 116
U(UO2)(PO4)2 41
U2O(PO4)2 37, 38
UC13 14
UC14 15
UO2C12 15
UPd2Sn 23
uranium halides 15
uranium oxohalides 15
uranyl chloride 202
(VO)3(P04)2 • 9H20 23
Y8026N2H18 191
YK(C2O4)2 • 4H2O 37
Zr(HPO4)2 • H2O 36
Zr(OH)2SO4 • 3H2O 40

organic
acetaldehyde 91
4-amidinoindanone guanylhydrazone 45
3-amino-4-nitro-6-methyl-8-oxopyr-

azolol[l,5-b]-pyrimidine 274
5-aminovaleric acid 71
benzophenone 274
bicyclo [2.2.1] heptane-C7H12 72
C6H6-C6F6 adduct 71
C2H4N2O2 34
C5HUNO2 23
(CH3)2S 91
(CH3)2SBr2 81
(CH3)2SBr25 82
(CH3)2SBr4 82
;j-CH3C6H4SO2NH2 34
C24F12 191
C4Br4F12 191
C4O2S4 234
CBr3F 91
CC13F 91
CF3Br 91
C8F16C116 191
CFH3 91
CF3I 91
C8F24I8 191
C24N4O20S4H52 191
C10N6SH16 23
chlorothiazide 156, 158, 159, 165-8, 273
cyanamide 91
cyclo-/3-peptide 34, 309
l,4-diethynyl-2,5-bis(octyloxy)benzene

2, 3
1,4-dimethanol benzene 150
dimethyl acetylene 91
dopamine hydrobromide 149, 150
famotidine 24, 254, 258, 260, 275-80
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structures (cont.):
organic (cont.):

fluorescein 274
fluorescein diacetate 3, 73, 200
fluticasone propionate 274
L-glutamic acid 272
hexamethylenetetramine cocrystal (1:1)

274
hydrochlorothiazide 272
ibuprofen 264, 266, 274
malonic acid 91
l-methylfluorene 22
6-methyluracil 270
(PEO)3:LiN(SO2CF3)2 294
(PEO)3:LiCF3 SO3 294
PEO:NaCF3SO3 298
(PEO)6:LiAsF6 302
Ph2P(O)(CH2)7P(O)Ph2 4, 24
piracetam 22, 34, 44-5
remacemide 24
RS-camphor 73
S4C4oN24H64 191
sodium para-hydroxybenzoate 63
sotalol 39
sulphamide 94-7
sulfathiazole 2, 200
telmisartan 274
4-(2,3,4-trifluorophenyl)-l,2,3,5-

dithiadiazolyl 274
m-xylene 94
o-xylene 91, 92

organometallic
bipyridine polymer 4
copper bipyridyl complex 24
/3-haematin 4, 78
[HgRu(CO)4]4 24
human insulin-zinc complex 83
methylammonium tin chloride 90
NaCD3 23, 78
Na16C16H48 191
nickel bipyridyl complex 24
RbC5H5 78
tetraferrocenyl-[3]-cumulene 24
uranyl phenylphosphonate 3

zeolites
A1PO4-53C (AEN) 316
aluminophosphate VPI-5 (VFI) 321
aluminophosphate VPI-8 (VET) 314
Beryllophosphate-H (BPH) 75
CIT-1 (CON) 314
EMC-2 (EMT) 320
EU-1 (EUO) 314
gismondine (GIS) 313
MAPSO-46 (AFS) 75
MCM-61 (MSO) 316
NU-3 (LEV) 249
NU-87 (NES) 314
RUB-10 (RUT) 228-9, 317

SAPO-40 (AFR) 208, 246, 319
[Si540108]3C8NH16 (LEV) 191
Si32O64N2C48 (AFR) 191, 208
Sigma-2 (SGT) 23, 68
SSZ-44(SFF) 316
UiO-7 (OSV) 76
UTD-IF(DON) 3, 175
zeolite A (LTA) 2, 311
zincosilicate VPI-9 (VNI) 4, 77, 316
ZSM-23 (MTT) 21
ZSM-5 (MFI) 2, 314

sublattice 123
superlattice 123
swarm algorithm 273
symmetry information 309-11
symmetry minimum function 202, 210-11,

212,215
symmetry 211

synchrotron X-ray diffraction 17, 106-7 121,
123, 138, 172, 200, 228, 308

anomalous scattering 8, 57-9, 69, 80, 106,
308

choice of wavelength 56-9, 106
comparison with laboratory X-ray

diffraction 22-5, 31, 39, 49-50
instrumental resolution 54-6
instrumentation 51-4
normalization 59
undulator 49

synchrotron radiation facilities
ESRF 6, 25, 52, 54, 56, 138
NSLS 23, 54, 56, 92
Photon Factory 52, 54
SRS 26, 31,52, 165

systematic absences 20, 29, 120, 122, 148,
150, 151

texture, see preferred orientation
texture approach to structure solution 3,

168-77
data analysis 174
data collection 173
inducing texture 169
instrumentation 171
orientation distribution function

harmonic method 174
WIMV method 174, 177

pole figures 170-4
theoretical description 170

torsion angle
description 256-8
polar plot 278

undulator 49
uranium-atom solution 220-1
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Waser restraints 184 Z function 219-21
whole-pattern fitting 179, 183-5, 286, 303 Z-matrix format 257
Wilson plot 181, 187, 195, 212, 235 zeolite 2, 9, 152, 175, 230, 311, 313, 317-19
Wilson statistics 195 zero-background sample holder 110

zone
central 125

X-n structure solution 92-3 dominant 121, 122, 129-30
X-ray absorption 34,65, 103, 106, 109, 110-11,

173, 195




